多自由度氣動(dòng)伺服機(jī)械手軌跡跟蹤控制研究
[Abstract]:In recent years, Cartesian coordinate Pneumatic manipulators, like other pneumatic manipulators, have become more and more important in industrial production. However, due to some factors, such as kinematic coupling, system friction and strong compressibility of transmission medium, the system is very nonlinear, because of the kinematic coupling of Cartesian coordinate pneumatic manipulator. As a result, the cylinder appears stagnation in the process of motion and the system control accuracy is not high. Therefore, it is of great significance for industrial production to improve the precision of motion control of pneumatic servo manipulator based on these factors. In order to improve the motion control accuracy of pneumatic servo manipulator, on the one hand, the kinematics decoupling of multi-degree-of-freedom pneumatic servo manipulator is carried out in this paper, and the mathematical model is established according to the working principle of pneumatic servo system to reduce the nonlinearity of the system. On the other hand, using LabVIEW as the upper computer motion control platform and using the NI-7358 motion control card to design the controller to reduce the motion error and improve the control accuracy. On the basis of consulting a large amount of data, this paper summarizes the research status of multi-degree-of-freedom pneumatic servo manipulators at home and abroad, analyzes their advantages and disadvantages, and determines the research content and research direction of this paper. Based on the D-H coordinate system method, the motion trajectory planning of multi-axis pneumatic servo manipulator is studied, and the mathematical model of pneumatic servo system is established according to the mass flow equation of pneumatic servo system and the equation of valve controlled cylinder system. Finally, the system transfer function is obtained. On the basis of understanding the working performance and principle of the cylinder, servo valve and grating position sensor of the experimental platform, this paper reconstructs the experimental platform of the Cartesian coordinate pneumatic manipulator. According to the principle of system signal transmission, the servo amplifier is redesigned and the system controller is designed. Then, in order to better control the trajectory tracking of Cartesian coordinate pneumatic manipulator, the tracking performance of the system based on PID control and PID control based on extended state observer is studied in theory and simulation. It is found by comparison that the tracking effect of the control system based on PID control is not good, and that the system based on extended state observer PID control has strong robustness to external disturbance and system uncertainty, so its tracking effect is better than that of PID control. Finally, the simulation tracking error of Cartesian coordinate pneumatic manipulator is 0.4mm. According to the working principle of the Cartesian coordinate pneumatic manipulator and the principle of PID control of the expanding state observer, the control program of the upper computer is compiled by using the LabVIEW software platform to control the motion of the manipulator. In order to ensure the stability of the signal input, the servo amplifier of the control system is tested. On the basis of the experimental platform, the multi-axis positioning and velocity control of the manipulator are experimented, which lays a foundation for the trajectory tracking experiment of the Cartesian coordinate pneumatic manipulator. On the basis of the previous work, the trajectory tracking experiment of pneumatic manipulator is carried out. The experiment on the XY axis of manipulator is carried out. By comparing the experimental results with the theoretical research and simulation results, the maximum tracking error of the Cartesian coordinate pneumatic manipulator is obtained, and the error reasons are analyzed. Finally, it shows that the manipulator based on this control method has better motion control effect.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP241
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王海強(qiáng);黃海;;擴(kuò)張狀態(tài)觀測(cè)器的性能與應(yīng)用[J];控制與決策;2013年07期
2 朱學(xué)建;馬永;馮渝;曾繁莊;趙偉;;直角坐標(biāo)機(jī)器人瓶坯裝箱生產(chǎn)線控制系統(tǒng)[J];食品與機(jī)械;2012年06期
3 彭芳;黎萍;周文輝;;直角坐標(biāo)機(jī)械手多軸聯(lián)動(dòng)路徑規(guī)劃研究[J];組合機(jī)床與自動(dòng)化加工技術(shù);2012年07期
4 張志遠(yuǎn);李琪;畢海深;;基于直角坐標(biāo)機(jī)器人的軟袋再包裝自動(dòng)上料系統(tǒng)[J];制造業(yè)自動(dòng)化;2012年06期
5 王洪斌;王艷;;帶有初始誤差的機(jī)械手軌跡跟蹤的快速迭代學(xué)習(xí)控制[J];系統(tǒng)工程理論與實(shí)踐;2011年01期
6 王威;楊平;;智能PID控制方法的研究現(xiàn)狀及應(yīng)用展望[J];自動(dòng)化儀表;2008年10期
7 劉軍;薛必翠;鄭軍海;;自抗擾控制器的分析及設(shè)計(jì)[J];信息技術(shù)與信息化;2008年03期
8 王焱玉;田玲;;磁流變氣動(dòng)速度控制系統(tǒng)的實(shí)驗(yàn)研究[J];機(jī)床與液壓;2007年08期
9 叢爽;劉宜;;多軸協(xié)調(diào)運(yùn)動(dòng)中的交叉耦合控制[J];機(jī)械設(shè)計(jì)與制造;2006年10期
10 譚冠政,徐雄,肖宏峰;工業(yè)機(jī)器人實(shí)時(shí)高精度路徑跟蹤與軌跡規(guī)劃[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
相關(guān)博士學(xué)位論文 前3條
1 王會(huì)方;串聯(lián)機(jī)器人多目標(biāo)軌跡優(yōu)化與運(yùn)動(dòng)控制研究[D];浙江大學(xué);2011年
2 Ogbobe,Peter Okwudilichukwu;六自由度運(yùn)動(dòng)仿真平臺(tái)模態(tài)空間解耦控制研究[D];哈爾濱工業(yè)大學(xué);2011年
3 毛新濤;氣動(dòng)機(jī)械手空間運(yùn)動(dòng)軌跡控制研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 譚鑫平;基于LabVIEW氣動(dòng)機(jī)械手位置控制實(shí)驗(yàn)臺(tái)的開(kāi)發(fā)研究[D];昆明理工大學(xué);2014年
2 曾浩;基于迭代學(xué)習(xí)理論的氣動(dòng)機(jī)械手速度控制研究[D];昆明理工大學(xué);2013年
3 盧娟;BP神經(jīng)網(wǎng)絡(luò)PID在三容系統(tǒng)中的控制研究[D];合肥工業(yè)大學(xué);2009年
4 崔宗偉;氣缸低速摩擦力特性的研究及其建模與仿真[D];哈爾濱工業(yè)大學(xué);2008年
5 陳娟;迭代學(xué)習(xí)控制方法在注塑機(jī)注射保壓全過(guò)程中的應(yīng)用[D];東北大學(xué);2008年
6 宋利國(guó);模糊控制及PID控制在氣動(dòng)伺服速度控制中的應(yīng)用研究[D];昆明理工大學(xué);2006年
7 陳小儉;氣動(dòng)機(jī)械手位置伺服控制系統(tǒng)及控制策略的研究[D];昆明理工大學(xué);2005年
8 王秋菊;氣動(dòng)機(jī)械手位置伺服控制系統(tǒng)的研究[D];湖南大學(xué);2004年
,本文編號(hào):2257361
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2257361.html