天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于GA-BP神經(jīng)網(wǎng)絡(luò)的池塘養(yǎng)殖水溫短期預(yù)測(cè)系統(tǒng)

發(fā)布時(shí)間:2018-09-19 14:00
【摘要】:為解決傳統(tǒng)的水溫小樣本非實(shí)時(shí)預(yù)測(cè)方法預(yù)測(cè)精度低、魯棒性差等問題,基于物聯(lián)網(wǎng)實(shí)時(shí)數(shù)據(jù),提出了遺傳算法(GA)優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的池塘養(yǎng)殖水溫短期預(yù)測(cè)方法,并在此基礎(chǔ)上設(shè)計(jì)開發(fā)了池塘養(yǎng)殖水溫預(yù)測(cè)系統(tǒng),首先采用主成分分析法篩選出影響池塘水溫的關(guān)鍵影響因子,減少輸入元素;然后使用遺傳算法對(duì)初始權(quán)重和閾值進(jìn)行優(yōu)化,獲取最優(yōu)參數(shù)并構(gòu)建了基于BP神經(jīng)網(wǎng)絡(luò)的水溫預(yù)測(cè)模型;最后采用Java語言開發(fā)了基于B/S體系結(jié)構(gòu)的預(yù)測(cè)系統(tǒng)。該系統(tǒng)在江蘇省宜興市河蟹養(yǎng)殖池塘進(jìn)行了預(yù)測(cè)驗(yàn)證。結(jié)果表明:該系統(tǒng)在短期的水溫預(yù)測(cè)中具有準(zhǔn)確的預(yù)測(cè)效果,與傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)算法相比,研究內(nèi)容評(píng)價(jià)指標(biāo)平均絕對(duì)誤差(MAE)、平均絕對(duì)百分誤差(MAPE)和誤差均方根(MSE)分別為0.196 8、0.007 9和0.059 2,均優(yōu)于單一BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè),可滿足實(shí)際的養(yǎng)殖池塘水溫管理需要。
[Abstract]:In order to solve the problems of low prediction accuracy and poor robustness of traditional non-real-time prediction method for small sample water temperature, a short-term prediction method of pond culture water temperature based on real-time data of Internet of things (IoT) was proposed based on genetic algorithm (GA) optimized BP neural network. On this basis, the prediction system of pond culture water temperature is designed and developed. Firstly, the key factors affecting pond water temperature are screened by principal component analysis, and the input elements are reduced, and then the initial weight and threshold are optimized by genetic algorithm. The optimal parameters are obtained and the water temperature prediction model based on BP neural network is constructed. Finally, a prediction system based on B / S architecture is developed by using Java language. The system was predicted and verified in river crab culture pond of Yixing City, Jiangsu Province. The results show that the system has accurate prediction effect in short-term water temperature prediction, compared with the traditional BP neural network algorithm. The average absolute error (MAE),) and mean absolute error (MAPE) and root mean square (RMS) (MSE) of the evaluation index were 0.196 and 0.059 2, respectively, which were superior to the prediction of single BP neural network, and could meet the requirement of water temperature management in culture pond.
【作者單位】: 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院;農(nóng)業(yè)部農(nóng)業(yè)信息獲取技術(shù)重點(diǎn)實(shí)驗(yàn)室;北京農(nóng)業(yè)物聯(lián)網(wǎng)工程技術(shù)研究中心;
【基金】:山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2015GGX101041) 上海市科技興農(nóng)重點(diǎn)攻關(guān)項(xiàng)目(滬農(nóng)科攻字(2014)第4-6-2號(hào)) 廣東省海大集團(tuán)基于物聯(lián)網(wǎng)技術(shù)的智慧水產(chǎn)養(yǎng)殖系統(tǒng)院士工作站(2012B090500008)
【分類號(hào)】:S964.3;TP183

【相似文獻(xiàn)】

相關(guān)碩士學(xué)位論文 前2條

1 楊爭光;養(yǎng)殖水質(zhì)數(shù)據(jù)處理與預(yù)測(cè)技術(shù)研究[D];太原科技大學(xué);2015年

2 潘金晶;基于RBF神經(jīng)網(wǎng)絡(luò)的溶解氧預(yù)測(cè)模型研究[D];上海海洋大學(xué);2016年

,

本文編號(hào):2250336

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2250336.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶52ba3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日韩色婷婷综合在线观看| 国产精品午夜视频免费观看| 日本女优一区二区三区免费| 人妻偷人精品一区二区三区不卡| 九九热国产这里只有精品| 亚洲一二三四区免费视频| 亚洲性生活一区二区三区| 国产黑人一区二区三区| 欧美日韩中黄片免费看| 国产精品午夜福利免费阅读| 国产欧美一区二区三区精品视| 视频在线观看色一区二区| 免费精品一区二区三区| 国产一区一一一区麻豆| 99精品国产一区二区青青| 久久亚洲成熟女人毛片| 国产日产欧美精品大秀| 亚洲欧美国产精品一区二区| 国产成人午夜福利片片| 国产成人精品在线播放| 91日韩欧美国产视频| 91偷拍视频久久精品| 日本理论片午夜在线观看| 日本乱论一区二区三区| 乱女午夜精品一区二区三区| 日韩精品视频香蕉视频| 在线九月婷婷丁香伊人| 在线免费视频你懂的观看| 国产一区一一一区麻豆| 国产一级精品色特级色国产| 精品精品国产自在久久高清| av免费视屏在线观看| 日韩免费av一区二区三区| 91欧美激情在线视频| 黄片免费播放一区二区| 免费在线成人午夜视频 | 国产丝袜极品黑色高跟鞋| 亚洲国产一级片在线观看| 日韩中文字幕视频在线高清版| 亚洲品质一区二区三区| 日本女人亚洲国产性高潮视频|