基于點(diǎn)云的噴漆機(jī)器人對(duì)汽車(chē)保險(xiǎn)杠識(shí)別和位姿估計(jì)
[Abstract]:With the appearance and improvement of depth camera, it becomes more and more convenient and fast to obtain 3D information of objects. As an important expression of 3D information of objects, point cloud has been developed in computer vision with point cloud as the background in recent years. In many fields, 3D vision plays an irreplaceable role in plane information, which extends the application of machine vision to new fields. This paper studies the problems related to the identification and pose estimation of automobile bumper by painting robot. The dependence of painting robot on 3D information determines the necessity of 3D vision. The application of the point cloud makes it possible for the painting robot to recognize the parts automatically, which is of great significance to the further development of the field of computer vision. In this paper, three dimensional point cloud recognition and pose estimation schemes are proposed, including point cloud processing and segmentation, point cloud recognition and pose estimation. First, the selection of the device to obtain the point cloud is determined, and the kinect is chosen as the vision hardware of the robot, and the complete point cloud of the full angle of view of each bumper is obtained manually. For the 3D point cloud obtained in each stage of the experiment, the obvious noise points are removed by means of direct pass filtering and statistical outlier filtering, and the point cloud density suitable for post-sequence processing is obtained by further sparse filtering. Because of the need of experiment, a method of distinguishing feature points is proposed, which keeps a high density for the point cloud around the Thrift feature point, and keeps the sparse point cloud in the far part from the feature point, and sets up a comparative experiment to verify the effect. The full view point cloud is simulated and the view feature histogram (VFH (Viewpoint Feature Histogram) of these single view point clouds is calculated. The principal component analysis (SVM (Support Vector Machine) classifier is trained by these data. In the phase of recognition and pose estimation, the minimum Euclidean distance based clustering segmentation method is used to segment the point cloud data with single view angle. The view feature histogram (VFH,) is extracted from each clustering, and then the trained SVM classifier is used to classify these VFH features. Kd-tree (kdemention) and BP (Back Propagation) neural network recognition are used to estimate the position and pose. In the part of recognition and pose estimation, a comparative experiment of using principal component analysis (PCA) to reduce PCA (Principal Component Analysis) and not to reduce dimension is also carried out. The experimental results show that the point cloud preprocessing, segmentation recognition and pose estimation designed in this paper are feasible, and the functions of recognition and pose estimation can be completed more quickly.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘇本躍;馬金宇;彭玉升;盛敏;;基于K-means聚類的RGBD點(diǎn)云去噪和精簡(jiǎn)算法[J];系統(tǒng)仿真學(xué)報(bào);2016年10期
2 袁華;龐建鏗;莫建文;;基于體素化網(wǎng)格下采樣的點(diǎn)云簡(jiǎn)化算法研究[J];電視技術(shù);2015年17期
3 劉輝;王伯雄;任懷藝;李鵬程;;ICP算法在雙目結(jié)構(gòu)光系統(tǒng)點(diǎn)云匹配中的應(yīng)用[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年07期
4 譚志國(guó);魯敏;胡延平;郭裕蘭;莊釗文;;基于點(diǎn)云-模型匹配的激光雷達(dá)目標(biāo)識(shí)別[J];計(jì)算機(jī)工程與科學(xué);2012年04期
5 方旭;;基于BP神經(jīng)網(wǎng)絡(luò)人臉識(shí)別方法的研究與改進(jìn)[J];電腦知識(shí)與技術(shù);2011年04期
6 魏永超;劉長(zhǎng)華;杜冬;;基于曲面分割的三維點(diǎn)云物體識(shí)別[J];光子學(xué)報(bào);2010年12期
7 宇雪垠;曹拓荒;陳本盛;;基于特征臉的人臉識(shí)別及實(shí)現(xiàn)[J];河北工業(yè)科技;2009年05期
8 孫亞;;基于粒子群BP神經(jīng)網(wǎng)絡(luò)人臉識(shí)別算法[J];計(jì)算機(jī)仿真;2008年08期
9 梁新合;宋志真;;改進(jìn)的點(diǎn)云精確匹配技術(shù)[J];裝備制造技術(shù);2008年03期
10 白裔峰;肖建;于龍;黃景春;;基于結(jié)構(gòu)風(fēng)險(xiǎn)最小化的加權(quán)偏最小二乘法[J];計(jì)算機(jī)應(yīng)用;2007年04期
相關(guān)博士學(xué)位論文 前1條
1 蘇宏濤;基于統(tǒng)計(jì)特征的人臉識(shí)別技術(shù)研究[D];西北工業(yè)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前6條
1 張楠;鐵路場(chǎng)景下三維點(diǎn)云識(shí)別與分類算法研究[D];北京交通大學(xué);2016年
2 常江;基于特征匹配的三維點(diǎn)云配準(zhǔn)算法研究[D];中北大學(xué);2015年
3 林志強(qiáng);面向智能服務(wù)機(jī)器人的物體感知研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
4 趙春雷;粗糙空間上結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則[D];河北大學(xué);2011年
5 戴永前;基于二維激光雷達(dá)的移動(dòng)機(jī)器人三維環(huán)境的識(shí)別[D];南京理工大學(xué);2007年
6 孫宇;基于激光雷達(dá)的機(jī)器人三維地形構(gòu)建和草叢中障礙物檢測(cè)[D];浙江大學(xué);2007年
,本文編號(hào):2250025
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2250025.html