仿人體3D運(yùn)動(dòng)的機(jī)械手臂運(yùn)動(dòng)軌跡自動(dòng)生成的研究
[Abstract]:Intelligence is one of the development goals of robot technology in the era of artificial intelligence. The advanced goal of robot technology research is to make robots think and do things like human beings. If robots are to be able to perform intelligent behaviors similar to human beings, they need to have a strong judgment ability and the ability to learn to gain experiential knowledge in a changing environment. The current technology can not meet the requirements of the robot, so for specific tasks, the user needs to program the robot. The programming of robots requires not only professional technical knowledge, but also complicated, time-consuming and laborious processes, which cannot meet the expectations of human beings for robots. In order to improve the ability of accomplishing tasks and to acquire new skills in the process of interaction with human beings, this paper will study a method that can automatically generate executable trajectory by imitating the movement of human arm. Compared with the traditional manual programming method for robot trajectory planning, the research of this topic will greatly reduce the difficulty and cycle of programming, and improve the automation level of robot programming. The intelligentization of the interaction between human and robot and the ease of use of the robot lay the foundation for the application of robot in a wider field. Firstly, this paper introduces the principle of measuring the coordinate of three dimensional point by multi-camera aiming at how to obtain the motion data of human arm. Through the study and use of optical motion capture system, the motion data acquisition is realized. Secondly, aiming at the problem of how to model the kinematics of the robot, taking a six-degree-of-freedom manipulator as an object, the kinematics model is established by using D-H method, the D-H parameters and the position and attitude transformation matrix between the connecting rod are determined, and the positive solution is obtained. In the inverse kinematics equation, the value problem of multiple solutions of inverse solutions is discussed, and the obtained solutions are verified by simulation. Then, aiming at the problem of how to describe the movement of human arm, the motion of arm is analyzed and simplified, and the motion of arm is described by a small amount of angle of joint rotation. On the basis of fuzzy logic theory, an adaptive neural fuzzy inference system is introduced. The complex fuzzy reasoning is carried out by using the learning ability of neural network, and the model of complex nonlinear system is established. Finally, aiming at the problem of how to generate the executable trajectory of the robot, the obtained arm motion data is converted into the corresponding robot joint path point, and in the joint space, A linear interpolation method with parabola fitting is used to generate the trajectory of the robot. Based on the related theories and algorithms, a robot trajectory automatic generation and simulation platform is developed, which realizes the real-time acquisition of the motion data of the teacher, the correct control of the robot and the 3D simulation of the generated trajectory.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉上高;劉電霆;;機(jī)器人運(yùn)動(dòng)學(xué)逆解及奇異和多解的處理[J];機(jī)床與液壓;2014年03期
2 王胤杰;沈林勇;章亞男;;基于運(yùn)動(dòng)捕捉儀的人體上肢運(yùn)動(dòng)軌跡參數(shù)的測(cè)量與分析[J];機(jī)電工程;2012年07期
3 張小娟;;自適應(yīng)神經(jīng)模糊推理系統(tǒng)(ANFIS)及其仿真[J];電子設(shè)計(jì)工程;2012年05期
4 王其軍;杜建軍;;MOTOMAN機(jī)器人逆運(yùn)動(dòng)學(xué)新分析[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2010年03期
5 張利格;畢樹(shù)生;高金磊;;仿人機(jī)器人復(fù)雜動(dòng)作設(shè)計(jì)中人體運(yùn)動(dòng)數(shù)據(jù)提取及分析方法[J];自動(dòng)化學(xué)報(bào);2010年01期
6 羅家佳,胡國(guó)清;基于MATLAB的機(jī)器人運(yùn)動(dòng)仿真研究[J];廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年05期
7 趙曉軍,黃強(qiáng),彭朝琴,張利格,李科杰;基于人體運(yùn)動(dòng)的仿人型機(jī)器人動(dòng)作的運(yùn)動(dòng)學(xué)匹配[J];機(jī)器人;2005年04期
8 陳慧萍,王建東,樊春霞;基于自適應(yīng)神經(jīng)模糊推理系統(tǒng)的非線性系統(tǒng)控制[J];計(jì)算機(jī)仿真;2004年03期
9 崔建偉,宋愛(ài)國(guó),黃惟一;遙操作系統(tǒng)中MOTOMAN-SV3X機(jī)器人的運(yùn)動(dòng)建模研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
10 張浩炯,余岳峰,王強(qiáng);應(yīng)用自適應(yīng)神經(jīng)模糊推理系統(tǒng)(ANFIS)進(jìn)行建模與仿真[J];計(jì)算機(jī)仿真;2002年04期
相關(guān)碩士學(xué)位論文 前5條
1 段曉燕;基于自適應(yīng)神經(jīng)模糊推理系統(tǒng)的迭代學(xué)習(xí)控制初始控制策略研究[D];蘭州理工大學(xué);2009年
2 王喜;基于自適應(yīng)神經(jīng)-模糊推理系統(tǒng)的鉛酸-蓄電池SOC模型辨識(shí)[D];華中科技大學(xué);2009年
3 陳翡;HIT-II型仿人機(jī)器人的視覺(jué)系統(tǒng)設(shè)計(jì)及運(yùn)動(dòng)規(guī)劃[D];哈爾濱工業(yè)大學(xué);2008年
4 張小冰;基于模仿的機(jī)器人編程技術(shù)研究[D];上海交通大學(xué);2007年
5 徐丹;基于視覺(jué)的機(jī)器人動(dòng)作模仿研究[D];河北工業(yè)大學(xué);2006年
,本文編號(hào):2244710
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2244710.html