深度學(xué)習(xí)在數(shù)據(jù)壓縮中的應(yīng)用研究
[Abstract]:With the advent of the information age, how data can be transmitted quickly and stored efficiently has become a hot topic, and data compression technology is just an effective way to solve this problem. Data compression technology has been paid more and more attention to for two reasons: first, the capacity of data storage devices is limited, in order to be able to store more data in a limited space, it is necessary to compress the original data. second, the rapid development of information technology on data. In order to achieve faster transmission speed and higher processing efficiency, the smaller the amount of data, the better. With the advent of the era of large data, data storage and transmission are facing. Because of the explosive growth of data volume and the complexity of data structure, traditional data compression algorithms are facing severe challenges. Under this background, this paper proposes a model which combines depth learning technology with clustering algorithm for data compression. The model not only obtains high compression ratio but also saves a lot of important information, so that the decompressed data can better represent the original data, which is very suitable for lossy compression of complex structure data. In the research of applying depth learning technology to data compression of smart meters, lossless coding technology is used to further compress the data after lossy compression. Finally, the performance of the model is verified by cross-validation technology. The experimental results show that the hybrid model is reliable and stable.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP181
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧俊鋒;張曉龍;;基于自動(dòng)編碼器組合的深度學(xué)習(xí)優(yōu)化方法[J];計(jì)算機(jī)應(yīng)用;2016年03期
2 Zhenlong Yuan;Yongqiang Lu;Yibo Xue;;Droid Detector:Android Malware Characterization and Detection Using Deep Learning[J];Tsinghua Science and Technology;2016年01期
3 苗海艷;郭麗芳;;廣義回歸神經(jīng)網(wǎng)絡(luò)在全國(guó)高技能人才需求中的應(yīng)用研究[J];科技管理研究;2015年16期
4 杜辰飛;曲建嶺;孫文柱;高峰;;基于稀疏自動(dòng)編碼器的飛參數(shù)據(jù)異常檢測(cè)[J];計(jì)測(cè)技術(shù);2015年02期
5 陸萍;陳志峰;施連敏;;RBM學(xué)習(xí)方法對(duì)比[J];計(jì)算機(jī)時(shí)代;2014年11期
6 劉羽;曾杰輝;劉曉陽(yáng);;一種船舶雷達(dá)導(dǎo)航回波數(shù)據(jù)壓縮算法的設(shè)計(jì)[J];計(jì)算機(jī)測(cè)量與控制;2014年08期
7 劉建偉;劉媛;羅雄麟;;深度學(xué)習(xí)研究進(jìn)展[J];計(jì)算機(jī)應(yīng)用研究;2014年07期
8 孫健;任國(guó)強(qiáng);吳欽章;;基于自適應(yīng)指數(shù)哥倫布編碼的圖像壓縮算法[J];光學(xué)精密工程;2013年11期
9 王元卓;靳小龍;程學(xué)旗;;網(wǎng)絡(luò)大數(shù)據(jù):現(xiàn)狀與展望[J];計(jì)算機(jī)學(xué)報(bào);2013年06期
10 張鳳元;蘭麗;鄒佳;公緒艷;楊東;;小波變換結(jié)合LZW壓縮算法探究[J];北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
相關(guān)碩士學(xué)位論文 前2條
1 陳承;基于壓縮感知的智能電表設(shè)計(jì)與實(shí)現(xiàn)[D];武漢理工大學(xué);2013年
2 趙亞飛;基于視覺(jué)的手勢(shì)識(shí)別技術(shù)研究[D];浙江大學(xué);2011年
,本文編號(hào):2243037
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2243037.html