基于時間序列的航天器遙測數(shù)據(jù)預(yù)測算法研究
[Abstract]:The important basis for scientific decision-making is correct prediction. In order to manage the orbiting spacecraft more efficiently, it is necessary to predict the state of spacecraft operation because the spacecraft operates in a complex space environment. The change trend of spacecraft telemetry parameters can effectively reflect its operation in space environment. The spacecraft telemetry parameters contain the detailed information of the equipment state. According to the variation rule of the data information, a suitable prediction model can be established for the change state of the telemetry parameters. The prediction algorithm based on time series has a bright future in the research field of spacecraft telemetry data. The change of historical parameters can influence the change trend of future parameters, which shows that the parameters are memorized. In this paper, the common prediction methods are briefly introduced, and the advantages of correlation prediction model in dealing with linear data and the shortcomings in dealing with nonlinear data are analyzed and summarized. In order to solve the problem of nonlinear data processing, an artificial neural network with nonlinear mapping function is introduced. At present, the development of BP network is the most mature. It has a powerful advantage in solving nonlinear data prediction. Efficient nonlinear mapping capability is its significant advantage. It has no obvious requirement for the prediction parameters. As long as the historical telemetry parameters are effectively studied, the future changes of the data can be predicted. However, the standard BP neural network prediction model itself also has some shortcomings. Aiming at these shortcomings of the algorithm, a corresponding optimization method is proposed. In practice, telemetry data sequences are often more complicated, and both nonlinear and linear relationships exist in specific time periods. Therefore, in this paper, the correlation of telemetry data based on time series is divided into nonlinear module and linear module. Because time series are decomposable, the linear principal part of telemetry data can be predicted by linear time series AR model. The next step will split the nonlinear sequence part, through the BP algorithm. The final output consists of the calculated nonlinear part and the linear part superposition. At the same time, because genetic algorithm (GA) is a global optimization algorithm, the GA algorithm is used to optimize the initial weight threshold of BP network in order to alleviate the problem that BP network is easy to fall into the minimum value. In this paper, the constructed prediction model is applied to an example of predicting the trend of a spacecraft telemetry data. After many simulation experiments, the results show that the AR-BP-GA synthetic prediction algorithm meets the requirements. And the simulation result is better than that using only one linear AR model. Finally, it is proved that the proposed comprehensive prediction algorithm is more practical and effective.
【學(xué)位授予單位】:西安工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V557;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉繼業(yè);陳西宏;薛倫生;劉強;;基于ARIMA與ANN組合模型的衛(wèi)星鐘差預(yù)報方法[J];大地測量與地球動力學(xué);2013年04期
2 房紅征;馬好東;羅凱;韓立明;熊毅;;基于遙測數(shù)據(jù)的航天器長期性能預(yù)示方法研究[J];計算機(jī)測量與控制;2013年07期
3 張超群;鄭建國;錢潔;;遺傳算法編碼方案比較[J];計算機(jī)應(yīng)用研究;2011年03期
4 李波;趙潔;郭晉;;設(shè)備故障評估新指標(biāo)及基于ARMA的預(yù)測系統(tǒng)[J];系統(tǒng)工程與電子技術(shù);2011年01期
5 秦巍;郭永富;;一種基于歷史遙測數(shù)據(jù)的在軌衛(wèi)星故障預(yù)警系統(tǒng)[J];航天器工程;2010年06期
6 李文濤;姜海波;王雪琴;;自回歸模型選擇的多準(zhǔn)則方法[J];統(tǒng)計與決策;2010年18期
7 郭小紅;徐小輝;趙樹強;楊繼春;;基于新息灰預(yù)測的衛(wèi)星遙測參數(shù)狀態(tài)預(yù)測及應(yīng)用[J];宇航學(xué)報;2010年08期
8 肇剛;李言俊;;基于時間序列數(shù)據(jù)挖掘的航天器故障診斷方法[J];飛行器測控學(xué)報;2010年03期
9 周俊杰;王德功;常碩;;淺析基于模型的航空電子裝備故障預(yù)測[J];裝備制造技術(shù);2010年05期
10 黃建國;羅航;王厚軍;龍兵;;運用GA-BP神經(jīng)網(wǎng)絡(luò)研究時間序列的預(yù)測[J];電子科技大學(xué)學(xué)報;2009年05期
相關(guān)博士學(xué)位論文 前2條
1 張滸;時間序列短期預(yù)測模型研究與應(yīng)用[D];華中科技大學(xué);2013年
2 杜奕;時間序列挖掘相關(guān)算法研究及應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 謝浩;基于BP神經(jīng)網(wǎng)絡(luò)及其優(yōu)化算法的汽車車速預(yù)測[D];重慶大學(xué);2014年
2 孫建樂;基于時間序列相似性的股價趨勢預(yù)測研究[D];重慶交通大學(xué);2014年
3 王紅;衛(wèi)星鋰離子電池剩余壽命預(yù)測方法及應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2013年
4 王瑞;基于遺傳優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的污水處理水質(zhì)預(yù)測研究[D];華南理工大學(xué);2012年
5 陳敏;基于BP神經(jīng)網(wǎng)絡(luò)的混沌時間序列預(yù)測模型研究[D];中南大學(xué);2007年
6 羅鳳曼;時間序列預(yù)測模型及其算法研究[D];四川大學(xué);2006年
7 姬春煦;基于神經(jīng)網(wǎng)絡(luò)集成的股票指數(shù)中期預(yù)測[D];西北工業(yè)大學(xué);2005年
8 孟慶芳;混沌時間序列預(yù)測方法及其應(yīng)用[D];山東大學(xué);2005年
9 白斌飛;基于神經(jīng)網(wǎng)絡(luò)理論的線性時間序列預(yù)測研究[D];西南交通大學(xué);2005年
10 陳卓;基于時間序列的設(shè)備缺陷預(yù)測的研究[D];遼寧工程技術(shù)大學(xué);2005年
,本文編號:2228688
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2228688.html