基于TensorFlow的卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用研究
[Abstract]:With the arrival of big data era and the continuous improvement of computer hardware performance, depth learning as a new machine learning method is used to analyze and process these data effectively. The core idea of depth learning is to use a series of nonlinear transformations to extract features from lower level to higher level and from general to specific semantics from the original data. Convolutional neural networks are especially good at extracting effective features from high-dimensional complex data structures. It is this rich feature expression ability that makes convolutional neural network widely used in image recognition and classification, target detection and location, man-machine game, driverless and other fields. Tensor flow is Google's open source in-depth learning platform. Also currently the most popular machine learning framework. In this paper, the convolution neural network is studied based on TensorFlow, and the model of convolutional neural network is implemented on this platform to solve the practical problems. The main work is as follows: firstly, the basic method of deep learning is introduced, and the convolution layer and pool layer in the network structure of convolutional neural network are studied, and the TensorFlow experimental platform is built to deeply understand the working principle and frame structure of TensorFlow. Secondly, the structure of LeNet-5 model is analyzed in detail. A simple convolution neural network is constructed by using two convolution layers and a full join layer to solve the problem of handwritten digit recognition. The improved LeNet-5 model achieves 99.3% accuracy on MNIST data set. Finally, the cuda-convnet model described by Alex is improved with some new techniques, mainly the regularization of L2 for weights and the enhancement of image data such as flipping random clipping to create more samples. The LRN layer is used after each convolution-maximum pool layer to enhance the generalization of the model. The improved convolution neural network achieves an accuracy of about 88% on the more complex and abundant CIFAR-10 datasets.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP18
【參考文獻(xiàn)】
相關(guān)博士學(xué)位論文 前7條
1 戶保田;基于深度神經(jīng)網(wǎng)絡(luò)的文本表示及其應(yīng)用[D];哈爾濱工業(yè)大學(xué);2016年
2 馮子勇;基于深度學(xué)習(xí)的圖像特征學(xué)習(xí)和分類方法的研究及應(yīng)用[D];華南理工大學(xué);2016年
3 吳翔;基于機(jī)器視覺的害蟲識別方法研究[D];浙江大學(xué);2016年
4 蘇向東;基于深度學(xué)習(xí)和知識策略的蒙古文古籍識別研究[D];內(nèi)蒙古大學(xué);2016年
5 謝凌曦;基于局部特征的圖像表示模型理論與實踐[D];清華大學(xué);2015年
6 張清辰;面向大數(shù)據(jù)特征學(xué)習(xí)的深度計算模型研究[D];大連理工大學(xué);2015年
7 馮方向;基于深度學(xué)習(xí)的跨模態(tài)檢索研究[D];北京郵電大學(xué);2015年
相關(guān)碩士學(xué)位論文 前5條
1 吳正文;卷積神經(jīng)網(wǎng)絡(luò)在圖像分類中的應(yīng)用研究[D];電子科技大學(xué);2015年
2 張勇;深度卷積神經(jīng)網(wǎng)絡(luò)在車牌和人臉檢測領(lǐng)域的應(yīng)用研究[D];鄭州大學(xué);2015年
3 何西麟;基于深度學(xué)習(xí)的手寫體字符識別研究與實現(xiàn)[D];中山大學(xué);2015年
4 陳先昌;基于卷積神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)算法與應(yīng)用研究[D];浙江工商大學(xué);2014年
5 許可;卷積神經(jīng)網(wǎng)絡(luò)在圖像識別上的應(yīng)用的研究[D];浙江大學(xué);2012年
,本文編號:2227939
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2227939.html