基于遙感技術(shù)的湖泊歷史變遷檢測及展示
[Abstract]:In this paper, the sand lake image data are extracted by preprocessing the remote sensing image data of Wuhan in different periods, and the image data are classified and processed by using the method of multi-scale segmentation and decision tree classification. The use of mobile terminals such as smart phones to show the historical changes of lakes provides a fast, accurate and convenient way for lake law enforcement personnel to detect illegal occupation of lakes and fill lakes, and further improve the efficiency of law enforcement personnel. At the same time, it also provides a reference for evidence collection of illegal lake filling. The change detection method used in this paper is the image classification and comparison method. The research is mainly divided into two aspects: remote sensing image preprocessing and object oriented image classification; The main research contents and innovations include the following aspects: 1, the research of remote sensing image preprocessing technology. In this paper, the image data of Shahu Lake in Wuhan City is obtained through geometric correction, image mosaic and image tailoring of aerial image obtained by Hubei Geographic Information Center. After resampling, the image data have the same resolution (1m). 2, the optimal segmentation scale in the multi-scale segmentation method. When using multi-scale segmentation method to classify the object oriented remote sensing images, the selection of scale parameters has a great influence on the classification results, and the size and number of objects are different when different segmentation scales are used to segment the images. The smaller the scale is, the more objects will be generated, which will lead to over-segmentation. Conversely, the larger the scale is, the fewer objects will be generated, which will lead to insufficient segmentation. Because there are differences in spectral, texture and structure characteristics among different types of objects, there are different optimal segmentation scales for different types of objects. Based on the principle of high internal homogeneity and high external heterogeneity, the segmentation quality function is established in this paper. By comparing the value of segmentation quality function under different scale parameters, we can judge the optimal segmentation scale. 3. The research and improvement of the classification method based on multi-scale segmentation and decision tree are presented. In this paper, multi-scale segmentation and CART decision tree classification methods are deeply studied and analyzed. The concept of image segmentation is introduced in the traditional multi-scale segmentation method, and two methods are proposed: one is based on image "splicing lines" and the other is based on large-scale multi-scale segmentation. Multi-scale segmentation and decision tree classification for subblocks are carried out. Taking the 81 year sand lake image data as the experimental object, the accuracy of these two improved classification methods is compared with the results of traditional multi-scale segmentation and decision tree classification. The results show that the accuracy of multi-scale segmentation and decision tree classification based on block is obviously higher than that of multi-scale segmentation and decision tree classification of whole image. The method based on large scale multi-scale block has the highest precision of .4and the detection of lake transition area based on intelligent mobile terminal. This paper briefly introduces the Wuhan Water Culture App system, and realizes the detection of the transition region of the classified image map in the system transition function module.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魯恒;付蕭;李龍國;劉超;白茹月;李乃穩(wěn);;最優(yōu)分割尺度支持下高分遙感影像水土資源信息分類[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年09期
2 杜珂磊;唐斌;李佳;;基于eCognition的玉樹結(jié)古鎮(zhèn)災(zāi)情動(dòng)態(tài)監(jiān)測研究[J];測繪與空間地理信息;2016年02期
3 楊柯;段功豪;牛瑞卿;黃思悅;曹亞;;基于多源遙感影像的武漢都市發(fā)展區(qū)湖泊變遷分析[J];長江科學(xué)院院報(bào);2016年01期
4 張毅;陳成忠;吳桂平;范興旺;潘鑫;劉元波;;遙感影像空間分辨率變化對湖泊水體提取精度的影響[J];湖泊科學(xué);2015年02期
5 曹幫琴;徐昊;;Android應(yīng)用中優(yōu)化Bitmap使用避免內(nèi)存溢出[J];河南工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年02期
6 李雪松;陳宏;張?zhí)K利;;城市空間擴(kuò)展與城市熱環(huán)境的量化研究——以武漢市東南片區(qū)為例[J];城市規(guī)劃學(xué)刊;2014年03期
7 馬云飛;李宏;;遙感變化檢測技術(shù)方法綜述[J];測繪與空間地理信息;2014年01期
8 淡永利;王宏志;張歡;張曉峰;縱兆偉;;2000—2010年武漢市中心城區(qū)湖泊景觀變化[J];生態(tài)學(xué)報(bào);2014年05期
9 趙艷;;Android中bitmap引起內(nèi)存溢出的解決方案的對比分析[J];科技傳播;2013年24期
10 盧曉平;馬進(jìn)全;;ERDAS在航測調(diào)繪片糾正中的應(yīng)用[J];測繪與空間地理信息;2012年02期
相關(guān)會議論文 前1條
1 陳剛;鄧文勝;王麗亞;;遙感技術(shù)在城市湖泊演變研究中的應(yīng)用[A];全國國土資源與環(huán)境遙感應(yīng)用技術(shù)研討會論文集[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 陳寅;多時(shí)相遙感圖像變化檢測技術(shù)研究[D];華中科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 雍萬鈴;基于面向?qū)ο蠖喑叨确指畹哪繕?biāo)信息提取研究[D];蘭州交通大學(xué);2016年
2 章琨;基于遙感影像的城市綠地提取技術(shù)研究[D];東華理工大學(xué);2014年
3 杜斌;基于面向?qū)ο蟮母叻直媛蔬b感影像水體信息提取優(yōu)勢研究[D];云南師范大學(xué);2014年
4 詹福雷;基于面向?qū)ο蟮母叻直媛蔬b感影像信息提取[D];吉林大學(xué);2014年
5 顏宏娟;面向?qū)ο蟮倪b感影像模糊分類方法研究[D];西安科技大學(xué);2008年
6 陳鑫;基于決策樹技術(shù)的遙感影像分類研究[D];南京林業(yè)大學(xué);2006年
,本文編號:2224744
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2224744.html