天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于貝葉斯推理的行人數(shù)量視頻檢測(cè)方法研究

發(fā)布時(shí)間:2018-08-31 21:06
【摘要】:本文針對(duì)行人數(shù)量檢測(cè)問題進(jìn)行了研究,在固定場(chǎng)景下,將行人圖像分割為行人前景區(qū),獲取行人前景區(qū)的先驗(yàn)知識(shí)以及少量樣本,使用貝葉斯規(guī)劃方法推理出行人前景區(qū)中的行人數(shù)量,統(tǒng)計(jì)各前景區(qū)的行人數(shù)量得到圖像行人數(shù)量。主要包括如下內(nèi)容:1)對(duì)行人前景區(qū)分割過程中,首先使用背景模型進(jìn)行過分割,為減少過分割帶入行人前景區(qū)的影響,使用K臨近區(qū)域快速合并方法進(jìn)行了細(xì)致的分割,得到較為準(zhǔn)確的行人前景區(qū)。2)對(duì)行人前景區(qū)進(jìn)行特征提取,考慮了透視變形對(duì)特征提取的影響,采用基于固定目標(biāo)的自標(biāo)定方法生成透視變換矩陣,消除透視變形對(duì)特征提取的影響。計(jì)算行人前景區(qū)的熵特征和區(qū)域協(xié)方差特征,這些特征與行人前景區(qū)的尺寸無關(guān),是基于前景區(qū)內(nèi)容差異性的“基元”特征。3)在使用貝葉斯規(guī)劃方法時(shí),獲取到行人前景區(qū)面積會(huì)隨行人數(shù)量的增加而增大的先驗(yàn)知識(shí),根據(jù)行人前景區(qū)的特征建立貝葉斯網(wǎng)對(duì)行人數(shù)量進(jìn)行推理,使用少量行人前景區(qū)樣本建立行人數(shù)量檢測(cè)模型。在實(shí)驗(yàn)部分,根據(jù)貝葉斯規(guī)劃方法推理出前景區(qū)的行人數(shù)量,使用少量的樣本學(xué)習(xí)模型,在測(cè)試時(shí)得到了較高的準(zhǔn)確率。本研究提出的行人數(shù)量檢測(cè)模型,可以檢測(cè)等待過街區(qū)域行人的數(shù)量,對(duì)行人過街交通信號(hào)的配時(shí)進(jìn)行實(shí)時(shí)優(yōu)化;可以用于實(shí)時(shí)獲取在公交站點(diǎn)等待乘客數(shù)量,優(yōu)化公共交通調(diào)度方案;可以檢測(cè)大型公共場(chǎng)所出入口人群數(shù)量,為人群的疏散提供決策。
[Abstract]:In this paper, the pedestrian number detection problem is studied. In the fixed scene, the pedestrian image is divided into the pedestrian front area, and the prior knowledge and a few samples of the pedestrian front scenic spot are obtained. Bayesian planning method is used to infer the number of pedestrians in the former scenic spots, and the number of pedestrians in the former scenic spots is counted to get the number of pedestrians in the images. The main contents are as follows: 1) in the process of pedestrian front scenic spot segmentation, the background model is first used for over-segmentation. In order to reduce the influence of over-segmentation into the pedestrian front scenic spot, the fast merging method of K-adjacent area is used to carry out the detailed segmentation. The feature extraction of pedestrian foreground area is carried out, and the influence of perspective deformation on feature extraction is considered, and the perspective transformation matrix is generated by self-calibration method based on fixed target. The influence of perspective deformation on feature extraction is eliminated. The entropy features and the regional covariance features of the pedestrian front scenic spot are calculated. These features are independent of the size of the pedestrian front scenic spot, and are based on the "basis" feature .3 of the content difference of the former scenic spot. To obtain the prior knowledge that the area of pedestrian front scenic area will increase with the increase of pedestrian number, a Bayesian network is established according to the characteristics of pedestrian front scenic area to infer the number of pedestrians, and a few samples of front pedestrian scenic spot are used to establish a pedestrian number detection model. In the experiment part, according to the Bayesian planning method, the number of pedestrians in the former scenic spot is deduced, and a small number of sample learning models are used to obtain a higher accuracy in the test. The pedestrian quantity detection model proposed in this study can detect the number of pedestrians waiting for crossing the street, optimize the traffic signal timing of pedestrian crossing, and can be used to obtain the number of passengers waiting at the bus stop in real time. It can detect the number of people at the entrance and exit of large public places and provide decision for the evacuation of public transportation.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TP18

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 石國楨;;工程診斷和診斷中的貝葉斯方法[J];機(jī)械強(qiáng)度;1984年02期

2 陳英武;高妍方;;貝葉斯網(wǎng)絡(luò)擴(kuò)展研究綜述[J];控制與決策;2008年10期

3 徐立;;預(yù)案分析的貝葉斯網(wǎng)絡(luò)方法[J];價(jià)值工程;2012年08期

4 胡春玲;;貝葉斯網(wǎng)絡(luò)研究綜述[J];合肥學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年01期

5 樓宇希;;應(yīng)用貝葉斯方法縮短可靠性試驗(yàn)時(shí)間[J];現(xiàn)代雷達(dá);1986年01期

6 鄭駿;隨機(jī)方法與貝葉斯方法在高新技術(shù)中的應(yīng)用[J];軟科學(xué);1995年01期

7 覃秋梅;張師超;;一類貝葉斯網(wǎng)絡(luò)的線性推理[J];計(jì)算機(jī)科學(xué);1999年10期

8 張琨,徐永紅,王珩,劉鳳玉;用于入侵檢測(cè)的貝葉斯網(wǎng)絡(luò)[J];小型微型計(jì)算機(jī)系統(tǒng);2003年05期

9 陳曉懷,程真英,劉春山;動(dòng)態(tài)測(cè)量誤差的貝葉斯建模預(yù)報(bào)[J];儀器儀表學(xué)報(bào);2004年S1期

10 李蕓;;基于貝葉斯信念網(wǎng)絡(luò)的數(shù)據(jù)分類挖掘算法[J];計(jì)算機(jī)科學(xué);2006年09期

相關(guān)會(huì)議論文 前10條

1 David Z.D'Argenio;;貝葉斯方法在實(shí)驗(yàn)室研究向臨床的轉(zhuǎn)化以及辨識(shí)隱含亞群體中的應(yīng)用(英文)[A];中國藥理學(xué)會(huì)臨床藥理學(xué)專業(yè)委員會(huì)會(huì)議暨第十次全國臨床藥理學(xué)學(xué)術(shù)會(huì)議論文集[C];2007年

2 姜峰;高文;姚鴻勛;;貝葉斯網(wǎng)絡(luò)的推理和學(xué)習(xí)[A];全國網(wǎng)絡(luò)與信息安全技術(shù)研討會(huì)'2005論文集(下冊(cè))[C];2005年

3 丁東洋;劉希陽;;風(fēng)險(xiǎn)分析中的穩(wěn)健貝葉斯方法[A];2011年全國電子信息技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2011年

4 周桃庚;沙定國;;貝葉斯可靠性序貫驗(yàn)證試驗(yàn)方法[A];中國儀器儀表學(xué)會(huì)第三屆青年學(xué)術(shù)會(huì)議論文集(下)[C];2001年

5 陳曉懷;程真英;劉春山;;動(dòng)態(tài)測(cè)量誤差的貝葉斯建模預(yù)報(bào)[A];第二屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2004年

6 杜鵬英;羅小平;何志明;;貝葉斯網(wǎng)絡(luò)的發(fā)展及理論應(yīng)用[A];第三屆全國虛擬儀器大會(huì)論文集[C];2008年

7 楊麗;武海濱;李康;;無金標(biāo)準(zhǔn)診斷試驗(yàn)評(píng)價(jià)的貝葉斯方法及應(yīng)用[A];2011年中國衛(wèi)生統(tǒng)計(jì)學(xué)年會(huì)會(huì)議論文集[C];2011年

8 寧鵬達(dá);;貝葉斯方法在風(fēng)險(xiǎn)投資項(xiàng)目決策中的應(yīng)用[A];第四屆中國科學(xué)學(xué)與科技政策研究會(huì)學(xué)術(shù)年會(huì)論文集(Ⅰ)[C];2008年

9 朱永生;;貝葉斯方法確定泊松變量的置信上限[A];中國物理學(xué)會(huì)高能物理分會(huì)第七屆學(xué)術(shù)年會(huì)實(shí)驗(yàn)分會(huì)場(chǎng)論文集[C];2006年

10 王增忠;柳玉杰;施建剛;;建筑工程項(xiàng)目全壽命安全管理決策的貝葉斯方法[A];中國優(yōu)選法統(tǒng)籌法與經(jīng)濟(jì)數(shù)學(xué)研究會(huì)第七屆全國會(huì)員代表大會(huì)暨第七屆中國管理科學(xué)學(xué)術(shù)年會(huì)論文集[C];2005年

相關(guān)博士學(xué)位論文 前10條

1 翟勝;基于貝葉斯網(wǎng)絡(luò)的復(fù)雜系統(tǒng)可靠分析方法研究與應(yīng)用[D];天津工業(yè)大學(xué);2016年

2 劉瑞;基于貝葉斯網(wǎng)絡(luò)的洪水災(zāi)害風(fēng)險(xiǎn)評(píng)估與建模研究[D];華東師范大學(xué);2016年

3 張潤(rùn)梅;基于貝葉斯網(wǎng)絡(luò)的復(fù)雜系統(tǒng)因果關(guān)系研究[D];合肥工業(yè)大學(xué);2015年

4 李艷穎;貝葉斯網(wǎng)絡(luò)學(xué)習(xí)及數(shù)據(jù)分類研究[D];西安電子科技大學(xué);2015年

5 趙建U,

本文編號(hào):2216180


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2216180.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1caeb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com