等離子噴涂氧化鎢涂層的制備及二氧化氮?dú)饷粜阅苎芯?/H1>
發(fā)布時(shí)間:2018-08-31 10:14
【摘要】:二氧化氮(NO2)是一種典型大氣污染物,可導(dǎo)致光化學(xué)煙霧與酸雨等環(huán)境問題,也是大氣污染物PM 2.5(粒徑小于2.5微米的固態(tài)顆粒)的成因之一,因此研發(fā)一種快速、穩(wěn)定、可靠的N02氣體傳感器具有重要的現(xiàn)實(shí)意義。n型寬禁帶半導(dǎo)體材料,如三氧化鎢(W03),被認(rèn)為是高效氣敏材料,在檢測(cè)N02氣體方面表現(xiàn)出巨大的應(yīng)用潛力。本文采用大氣等離子噴涂(APS)、溶液前驅(qū)體等離子噴涂(SPPS)和復(fù)合等離子噴涂(APS+SPPS)三種工藝方法,以WO3粉末和鎢酸銨水溶液作為噴涂原料沉積W03單個(gè)粒子和涂層,研究噴涂工藝參數(shù)(基體溫度、噴涂距離和氫氣流量)對(duì)單個(gè)粒子和涂層微觀結(jié)構(gòu)的影響規(guī)律,最后對(duì)W03的N02氣敏性能進(jìn)行評(píng)價(jià)與分析。首先,對(duì)比APS和SPPS兩種工藝,研究基體溫度和噴涂距離對(duì)單個(gè)粒子沉積形貌的影響。實(shí)驗(yàn)結(jié)果表明,基體未預(yù)熱時(shí),APS粒子飛濺嚴(yán)重;隨著基體溫度的增加,微米粒子形貌從飛濺狀向圓盤狀轉(zhuǎn)變,轉(zhuǎn)變溫度在200℃左右。對(duì)于SPPS納米粒子而言,形貌更加復(fù)雜;w溫度為200℃時(shí),出現(xiàn)泡沫狀顆粒;當(dāng)基體溫度為250℃時(shí),出現(xiàn)中空球狀沉積粒子。隨后,研究了噴涂距離和氫氣流量對(duì)沉積粒子的影響規(guī)律,實(shí)驗(yàn)結(jié)果顯示,噴涂距離為100 mm,氫氣流量為4 L/min時(shí),粒子的扁平化程度最好。然后,采用三種工藝,在帶有金電極的氧化鋁(A1203)傳感器基體上制備了 W03涂層。掃描電鏡分析發(fā)現(xiàn),所有W03涂層都呈多孔、層狀特征,其中SPPS涂層孔隙率最高,APS涂層最低,APS+SPPS涂層居中。經(jīng)研究發(fā)現(xiàn),APS制備WO3涂層毛孔粗大,涂層由微米粒子堆積而成;SPPS制備W03涂層毛孔細(xì)小,涂層比表面積大;APS+SPPS具有獨(dú)特的微觀形貌,在粗大的微米級(jí)W03粒子表面附著許多納米級(jí)W03顆粒,形成獨(dú)特的微納結(jié)構(gòu)。最后,對(duì)三種涂層進(jìn)行氣敏測(cè)試。結(jié)果顯示,SPPS涂層靈敏度最高,APS靈敏度最低。這是因?yàn)镾PPS涂層呈現(xiàn)多孔結(jié)構(gòu),且比面積最高。涂層形貌對(duì)氣敏性能有重要影響,當(dāng)采用SPPS沉積涂層時(shí),噴涂距離為100 mm時(shí),涂層氣敏性能最佳;當(dāng)采用APS+SPPS沉積涂層,氫氣流量為2 L/min時(shí),涂層靈敏度最佳。本文還測(cè)試了傳感器工作溫度和環(huán)境濕度對(duì)靈敏度的影響規(guī)律,當(dāng)工作溫度從150℃增加到250℃時(shí),所有試樣靈敏度均呈下降趨勢(shì),但響應(yīng)恢復(fù)時(shí)間縮短;環(huán)境濕度從0%增加到100%時(shí),傳感器的基準(zhǔn)電阻降低,但靈敏度變化卻較為復(fù)雜。
[Abstract]:Nitrogen dioxide (NO2) is a typical atmospheric pollutant, which can cause environmental problems such as photochemical smog and acid rain. It is also one of the causes of atmospheric pollutant PM 2.5 (solid particles with particle size less than 2.5 microns). Therefore, it is of great practical significance to develop a fast, stable and reliable N02 gas sensor. Tungsten trioxide (W03) is considered as a highly efficient gas sensitive material. It has great potential in detecting N02 gas. In this paper, three process methods, atmospheric plasma spraying (APS), solution precursor plasma spraying (SPPS) and composite plasma spraying (APS + SPPS), were used to deposit single W03 with WO3 powder and ammonium tungstate aqueous solution as spraying materials. The influence of spraying parameters (substrate temperature, spraying distance and hydrogen flow rate) on the microstructure of single particle and coating was studied. Finally, the gas sensitivity of W03 N02 was evaluated and analyzed. Firstly, the influence of substrate temperature and spraying distance on the deposition morphology of single particle was studied by comparing APS with SPPS. The results showed that APS particles splashed seriously when the substrate was not preheated, and the morphology of micron particles changed from splashing to disc with the increase of substrate temperature, and the transition temperature was about 200. For SPPS nanoparticles, the morphology was more complex. Foam particles appeared when the substrate temperature was 200, and hollow spheres appeared when the substrate temperature was 250. Subsequently, the effects of spraying distance and hydrogen flow rate on the deposition particles were studied. The experimental results showed that the flattening degree of the particles was the best when the spraying distance was 100 mm and the hydrogen flow rate was 4 L/min. Then, W03 coating was prepared on the aluminum oxide (A1203) sensor substrate with gold electrode by three processes. Microscopic analysis showed that all W03 coatings were porous and layered, of which the porosity of SPPS coating was the highest, APS coating was the lowest, and APS + SPPS coating was the middle. The results show that the SPPS coating has the highest sensitivity and the APS sensitivity is the lowest. This is because the SPPS coating has the porous structure and the highest specific area. When the spraying distance is 100 mm and the hydrogen flow rate is 2 L/min, the gas sensitivity of the coating is the best. The influence of working temperature and ambient humidity of the sensor on the sensitivity is also tested. Sensitivity is decreasing, but response recovery time is shortened. When ambient humidity is increased from 0% to 100%, the reference resistance of the sensor decreases, but the change of sensitivity is more complex.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙巖,馮鐘潮,張炳春,梁勇;脈沖激光濺射沉積WO_3氣敏膜[J];傳感技術(shù)學(xué)報(bào);1998年04期
2 吳廣明,傅亞翔,馬建華,沈軍;納米多孔WO_3薄膜的溶膠-凝膠制備與熱處理[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年03期
3 林偉,黃世震,陳偉,顏志波,耿濤;磁控濺射WO_3薄膜特性研究[J];鄭州輕工業(yè)學(xué)院學(xué)報(bào);2002年04期
4 常劍,蔣登高,詹自力,宋文會(huì);半導(dǎo)體金屬氧化物氣敏材料敏感機(jī)理概述[J];傳感器世界;2003年08期
5 徐濱士,馬世寧,劉世參,張偉,張振學(xué);表面工程的應(yīng)用和再制造工程[J];材料保護(hù);2000年01期
6 丁紅燕,陳志剛,陳彩鳳;納米Al_2O_3彌散強(qiáng)化復(fù)合涂層的制備及耐磨性研究[J];機(jī)械工程材料;2003年04期
7 吳義炳;半導(dǎo)體氣敏元件[J];機(jī)械工程與自動(dòng)化;2005年01期
8 傅迎慶,高陽,張占平,黑祖昆;襯底溫度對(duì)等離子噴涂熔滴扁平化的影響[J];兵器材料科學(xué)與工程;2005年02期
9 余華梁,黃世震,林偉,陳偉;用氣相反應(yīng)法制備納米WO_3氣敏材料[J];傳感技術(shù)學(xué)報(bào);2005年02期
10 李冬梅;黃元慶;張佳平;張?chǎng)?辜克兢;;幾種常見氣體傳感器的研究進(jìn)展[J];傳感器世界;2006年01期
相關(guān)碩士學(xué)位論文 前2條
1 閔捷;液料等離子噴涂納米氧化鋯/氧化釔涂層的結(jié)構(gòu)與性能研究[D];武漢理工大學(xué);2010年
2 紀(jì)小健;大氣等離子噴涂7wt.%Y_2O_3-ZrO_2涂層的工藝及性能研究[D];北京工業(yè)大學(xué);2009年
,
本文編號(hào):2214682
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2214682.html
[Abstract]:Nitrogen dioxide (NO2) is a typical atmospheric pollutant, which can cause environmental problems such as photochemical smog and acid rain. It is also one of the causes of atmospheric pollutant PM 2.5 (solid particles with particle size less than 2.5 microns). Therefore, it is of great practical significance to develop a fast, stable and reliable N02 gas sensor. Tungsten trioxide (W03) is considered as a highly efficient gas sensitive material. It has great potential in detecting N02 gas. In this paper, three process methods, atmospheric plasma spraying (APS), solution precursor plasma spraying (SPPS) and composite plasma spraying (APS + SPPS), were used to deposit single W03 with WO3 powder and ammonium tungstate aqueous solution as spraying materials. The influence of spraying parameters (substrate temperature, spraying distance and hydrogen flow rate) on the microstructure of single particle and coating was studied. Finally, the gas sensitivity of W03 N02 was evaluated and analyzed. Firstly, the influence of substrate temperature and spraying distance on the deposition morphology of single particle was studied by comparing APS with SPPS. The results showed that APS particles splashed seriously when the substrate was not preheated, and the morphology of micron particles changed from splashing to disc with the increase of substrate temperature, and the transition temperature was about 200. For SPPS nanoparticles, the morphology was more complex. Foam particles appeared when the substrate temperature was 200, and hollow spheres appeared when the substrate temperature was 250. Subsequently, the effects of spraying distance and hydrogen flow rate on the deposition particles were studied. The experimental results showed that the flattening degree of the particles was the best when the spraying distance was 100 mm and the hydrogen flow rate was 4 L/min. Then, W03 coating was prepared on the aluminum oxide (A1203) sensor substrate with gold electrode by three processes. Microscopic analysis showed that all W03 coatings were porous and layered, of which the porosity of SPPS coating was the highest, APS coating was the lowest, and APS + SPPS coating was the middle. The results show that the SPPS coating has the highest sensitivity and the APS sensitivity is the lowest. This is because the SPPS coating has the porous structure and the highest specific area. When the spraying distance is 100 mm and the hydrogen flow rate is 2 L/min, the gas sensitivity of the coating is the best. The influence of working temperature and ambient humidity of the sensor on the sensitivity is also tested. Sensitivity is decreasing, but response recovery time is shortened. When ambient humidity is increased from 0% to 100%, the reference resistance of the sensor decreases, but the change of sensitivity is more complex.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙巖,馮鐘潮,張炳春,梁勇;脈沖激光濺射沉積WO_3氣敏膜[J];傳感技術(shù)學(xué)報(bào);1998年04期
2 吳廣明,傅亞翔,馬建華,沈軍;納米多孔WO_3薄膜的溶膠-凝膠制備與熱處理[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年03期
3 林偉,黃世震,陳偉,顏志波,耿濤;磁控濺射WO_3薄膜特性研究[J];鄭州輕工業(yè)學(xué)院學(xué)報(bào);2002年04期
4 常劍,蔣登高,詹自力,宋文會(huì);半導(dǎo)體金屬氧化物氣敏材料敏感機(jī)理概述[J];傳感器世界;2003年08期
5 徐濱士,馬世寧,劉世參,張偉,張振學(xué);表面工程的應(yīng)用和再制造工程[J];材料保護(hù);2000年01期
6 丁紅燕,陳志剛,陳彩鳳;納米Al_2O_3彌散強(qiáng)化復(fù)合涂層的制備及耐磨性研究[J];機(jī)械工程材料;2003年04期
7 吳義炳;半導(dǎo)體氣敏元件[J];機(jī)械工程與自動(dòng)化;2005年01期
8 傅迎慶,高陽,張占平,黑祖昆;襯底溫度對(duì)等離子噴涂熔滴扁平化的影響[J];兵器材料科學(xué)與工程;2005年02期
9 余華梁,黃世震,林偉,陳偉;用氣相反應(yīng)法制備納米WO_3氣敏材料[J];傳感技術(shù)學(xué)報(bào);2005年02期
10 李冬梅;黃元慶;張佳平;張?chǎng)?辜克兢;;幾種常見氣體傳感器的研究進(jìn)展[J];傳感器世界;2006年01期
相關(guān)碩士學(xué)位論文 前2條
1 閔捷;液料等離子噴涂納米氧化鋯/氧化釔涂層的結(jié)構(gòu)與性能研究[D];武漢理工大學(xué);2010年
2 紀(jì)小健;大氣等離子噴涂7wt.%Y_2O_3-ZrO_2涂層的工藝及性能研究[D];北京工業(yè)大學(xué);2009年
,本文編號(hào):2214682
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2214682.html