基于多類分類的主動(dòng)學(xué)習(xí)改進(jìn)算法
[Abstract]:For supervised learning model, sufficient number of labeled samples is a prerequisite for obtaining high accuracy classifiers. However, in reality, unlabeled samples account for a large proportion of the total samples, while manual labeling is expensive, so it is necessary to control the quantity and quality of training samples. It is a key problem to solve the problem of active learning that how to efficiently select the non-class sample with high classification contribution and add to the existing training set in order to improve the accuracy and robustness of classifier step by step. In addition, most of the active learning research is confined to the closed sample set, how to apply active learning to the open production environment and achieve high classification accuracy is also worth studying. Aiming at the problem of inter-class equilibrium and outliers in BvSB sample selection algorithm, a Center reBvSB sample selection algorithm is proposed by combining uncertainty and representativeness. Firstly, K-Means clustering is used to select representative training set A, then reBvSB sample selection algorithm is used to select representative edge equilibrium sample set B. finally, A and B are integrated and the training set is updated. Experimental results show that the proposed algorithm can improve the accuracy and robustness of the classifier. The Center reBvSB sample selection algorithm is integrated into the active learning algorithm, and an improved BvSB active learning algorithm is proposed. The recognition ability of the classifier can be further improved by retraining the classifier by using the error sample pool generated by on-line recognition combined with the original sample pool. The Mnist dataset is used to simulate the real online recognition scene. The experimental results show that the improved active learning algorithm has better robustness and higher recognition accuracy.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP181
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高成;陳秀新;于重重;劉宇;;基于主動(dòng)學(xué)習(xí)的圖半監(jiān)督分類算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年07期
2 徐美香;孫福明;李豪杰;;主動(dòng)學(xué)習(xí)的多標(biāo)簽圖像在線分類[J];中國(guó)圖象圖形學(xué)報(bào);2015年02期
3 金良;曹永鋒;蘇彩霞;任俊英;;基于HS樣本選擇和BvSB反饋的多類圖像分類[J];貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
4 余凱;賈磊;陳雨強(qiáng);徐偉;;深度學(xué)習(xí)的昨天、今天和明天[J];計(jì)算機(jī)研究與發(fā)展;2013年09期
5 曹永鋒;陳榮;孫洪;;基于BvSBHC的主動(dòng)學(xué)習(xí)多類分類算法[J];計(jì)算機(jī)科學(xué);2013年08期
6 李海峰;李純果;;深度學(xué)習(xí)結(jié)構(gòu)和算法比較分析[J];河北大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
7 劉康;錢旭;王自強(qiáng);;主動(dòng)學(xué)習(xí)算法綜述[J];計(jì)算機(jī)工程與應(yīng)用;2012年34期
8 陳榮;曹永鋒;孫洪;;基于主動(dòng)學(xué)習(xí)和半監(jiān)督學(xué)習(xí)的多類圖像分類[J];自動(dòng)化學(xué)報(bào);2011年08期
9 韓光;趙春霞;胡雪蕾;;一種新的SVM主動(dòng)學(xué)習(xí)算法及其在障礙物檢測(cè)中的應(yīng)用[J];計(jì)算機(jī)研究與發(fā)展;2009年11期
10 胡正平;高文濤;萬(wàn)春艷;;基于樣本不確定性和代表性相結(jié)合的可控主動(dòng)學(xué)習(xí)算法研究[J];燕山大學(xué)學(xué)報(bào);2009年04期
相關(guān)碩士學(xué)位論文 前5條
1 徐艷;基于主動(dòng)學(xué)習(xí)的圖像標(biāo)注方法研究[D];遼寧工業(yè)大學(xué);2014年
2 白龍飛;基于支持向量機(jī)的主動(dòng)學(xué)習(xí)方法研究[D];山西大學(xué);2012年
3 劉峰濤;基于樣例池類標(biāo)改變率的主動(dòng)學(xué)習(xí)算法終止準(zhǔn)則研究[D];河北大學(xué);2011年
4 王珍鈺;基于不確定性的主動(dòng)學(xué)習(xí)算法研究[D];河北大學(xué);2011年
5 趙秋煥;兩種主動(dòng)學(xué)習(xí)方法[D];河北大學(xué);2010年
,本文編號(hào):2213023
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2213023.html