基于多源信息融合的非接觸式疲勞駕駛檢測系統(tǒng)研究
[Abstract]:With the progress of society and the gradual improvement of people's living standard, the number of cars is increasing year by year. The complicated road traffic environment leads to frequent traffic accidents. Fatigue driving has become the main cause of traffic accidents. The current fatigue driving detection device usually uses the contact physiological signal to detect the driver's fatigue state, which not only causes the driver to feel uncomfortable, but also interferes with the driver's normal driving. The fatigue driving detection method based on contactless image sensor to detect driver's face information overcomes the shortcomings of low accuracy and poor reliability of contact detection, but it is easily disturbed by external environment. Therefore, the study of multi-source information fusion non-contact fatigue driving detection device can effectively reduce traffic accidents. In this paper, a multi-source information fusion system based on radar detection physiological signal and steering wheel angle detection is designed. The system mainly includes Doppler radar physiological signal detection system, steering wheel angle detection system and driving video signal recording system. Firstly, according to the principle of Doppler radar detecting physiological signal, the hardware system is designed, and a series of signal processing, such as preprocessing, amplifying, active bandpass filtering, A / D conversion and so on, are carried out. The radar digital signal related to physiological information is obtained from it. The steering wheel angle acquisition system combines Hall angle sensor and rotary encoder to collect angle signal of steering wheel. Secondly, aiming at the characteristics of radar digital signal, two different digital filtering methods, FIR and IIR, are used to separate the physiological signal. The advantages and disadvantages of the separation algorithm are compared, and the breathing signal and the heartbeat signal are separated by the zero-phase IIR filtering algorithm. Finally, the student T-test method is used to analyze the characteristic values of fatigue driving video signal and synchronized breathing and heartbeat signal, and the signal quantity associated with fatigue degree is obtained. And designed the extreme learning machine feedforward neural network algorithm to identify the fatigue degree. The characteristic values of physiological signal and steering wheel signal were extracted under different fatigue degree, and the identification was trained by extreme learning machine algorithm, and the fatigue sample data were identified and tested. The student T test method was used to calculate the fatigue data of the driver. The conclusion showed that the breathing depth of the driver was strongly dependent on the fatigue driving. The experimental data waveforms show that the steering wheel angle changes and the breathing amplitude and frequency of the driver decrease with the deepening of sleep. Driver fatigue samples are selected for identification test. The results show that the identification rate of fatigue state reaches 81%. The multi-source information fusion-based non-contact fatigue driving detection system has the advantages of predictability and high recognition accuracy.
【學位授予單位】:杭州電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP274
【參考文獻】
相關(guān)期刊論文 前10條
1 秦穎;張晶;蔡靖;戴強;;基于交直流分離的反射式血氧飽和度測量系統(tǒng)的設(shè)計[J];傳感技術(shù)學報;2015年06期
2 郭勇;劉巍;黃澤華;李秋燕;;重點行業(yè)用電監(jiān)測分析系統(tǒng)開發(fā)模型研究[J];電子技術(shù)與軟件工程;2015年06期
3 李薛媛;;疲勞駕駛預(yù)防措施的研究[J];交通世界(運輸.車輛);2012年06期
4 李永增;馮尚源;林居強;陳冠楠;黃祖芳;謝樹森;陳榮;;生物組織拉曼光譜數(shù)據(jù)的統(tǒng)計分析[J];激光生物學報;2011年01期
5 歐韜;周長春;;基于神經(jīng)網(wǎng)絡(luò)的民航安全態(tài)勢評估模型及仿真[J];中國安全生產(chǎn)科學技術(shù);2011年02期
6 成波;馮睿嘉;張偉;李家文;張希波;;基于多源信息融合的駕駛?cè)似跔顟B(tài)監(jiān)測及預(yù)警方法研究[J];公路交通科技;2009年S1期
7 馮冬青;杜云龍;;心電信號處理數(shù)字濾波方法研究[J];微計算機信息;2008年07期
8 王靖;李永全;;數(shù)字橢圓濾波器的Matlab設(shè)計與實現(xiàn)[J];現(xiàn)代電子技術(shù);2007年06期
9 梅玉芳;;儀表放大器及其應(yīng)用問題研究[J];中國科技信息;2006年16期
10 路國華,楊國勝,王健琪,荊西京;雷達式生命探測儀中人體數(shù)量識別技術(shù)的研究[J];北京生物醫(yī)學工程;2005年01期
相關(guān)博士學位論文 前2條
1 牛清寧;基于信息融合的疲勞駕駛檢測方法研究[D];吉林大學;2014年
2 胡巍;基于多普勒雷達的非接觸式生命體征檢測技術(shù)研究[D];中國科學技術(shù)大學;2014年
相關(guān)碩士學位論文 前10條
1 許苗苗;基于物聯(lián)網(wǎng)的傾角式明渠自動測流系統(tǒng)的研究[D];太原理工大學;2016年
2 李瑞;一種新型心電信號檢測讀取電路的研究與設(shè)計[D];重慶大學;2014年
3 呂娜;極限學習機及其在無線頻譜預(yù)測中的應(yīng)用研究[D];蘭州大學;2014年
4 李甫;基于典型交通事故分析的汽車運行風險研究[D];吉林大學;2013年
5 石磊;基于Android智能移動終端的汽車疲勞駕駛預(yù)警系統(tǒng)的研究與實現(xiàn)[D];南京郵電大學;2013年
6 張華;生物雷達非接觸檢測中呼吸和心跳信號分離算法研究[D];第四軍醫(yī)大學;2012年
7 王琦;電動汽車電源管理系統(tǒng)設(shè)計與實現(xiàn)[D];大連理工大學;2011年
8 黃松;基于數(shù)值優(yōu)化的注塑成型工藝分析[D];華南理工大學;2011年
9 張成立;穿墻生命探測雷達信號處理硬件設(shè)計[D];西安電子科技大學;2011年
10 谷也;基于方向盤轉(zhuǎn)角信號的駕駛員疲勞監(jiān)測裝置研制[D];哈爾濱工業(yè)大學;2009年
,本文編號:2210884
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2210884.html