天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動化論文 >

智能預(yù)測控制在磨機(jī)自動控制系統(tǒng)中的應(yīng)用

發(fā)布時間:2018-08-23 08:32
【摘要】:磨機(jī)是水泥粉磨系統(tǒng)中重要的設(shè)備之一,磨機(jī)負(fù)荷的穩(wěn)定直接影響磨機(jī)的粉磨效率和水泥的成品質(zhì)量,因此,對于磨機(jī)負(fù)荷的研究具有重大的意義。隨著自動化水平的不斷提高,對于磨機(jī)自動控制系統(tǒng)的模型研究和優(yōu)化控制的要求將越來越高。由于磨機(jī)是一個具有非線性、純滯后、強(qiáng)耦合等特點(diǎn)復(fù)雜工業(yè)被控對象,采用常規(guī)的控制算法難以取得良好的控制效果。本文以某水泥廠磨機(jī)自動控制系統(tǒng)作為研究對象,在了解水泥粉磨系統(tǒng)國內(nèi)外研究現(xiàn)狀的基礎(chǔ)上,提出了采用智能預(yù)測控制對磨機(jī)負(fù)荷進(jìn)行優(yōu)化控制。根據(jù)聯(lián)合粉磨工藝流程,選取了選粉機(jī)轉(zhuǎn)速作為系統(tǒng)輸入,出磨提升機(jī)電流作為系統(tǒng)輸出,并采取了基于神經(jīng)網(wǎng)路的預(yù)測控制策略對磨機(jī)負(fù)荷進(jìn)行優(yōu)化控制。在此基礎(chǔ)上,開發(fā)了磨機(jī)自動控制系統(tǒng)的上位機(jī)軟件。本文主要工作如下:(1)利用三層前向BP神經(jīng)網(wǎng)絡(luò)辨識磨機(jī)負(fù)荷模型并進(jìn)行預(yù)測控制器設(shè)計。首先采集現(xiàn)場的輸入輸出數(shù)據(jù),辨識系統(tǒng)模型的輸入輸出延時階數(shù);然后用辨識出來的神經(jīng)網(wǎng)絡(luò)模型作為預(yù)測模型,運(yùn)用N-R滾動優(yōu)化方法計算系統(tǒng)未來控制序列,反饋校正用來克服擾動帶來的模型預(yù)測誤差;最后,通過Matlab仿真驗證了該算法在水泥磨機(jī)自動控制系統(tǒng)的有效性。(2)運(yùn)用了VC++中MFC和Matlab混合編程的方式開發(fā)預(yù)測控制軟件。通過Matlab Compiler方法把用m文件編寫的算法程序編譯成VC++的DLL動態(tài)鏈接庫文件,在VC++中調(diào)用DLL文件實(shí)現(xiàn)算法模塊的功能;運(yùn)用OPC技術(shù)實(shí)現(xiàn)數(shù)據(jù)的讀取和寫入的功能;最后,為了實(shí)現(xiàn)動態(tài)效果的顯示,在MFC程序中導(dǎo)入TeeChart5控件,用來實(shí)時的顯示出磨提升機(jī)電流的變化趨勢以實(shí)現(xiàn)用戶界面的設(shè)計。(3)為了工程的實(shí)際應(yīng)用,驗證了優(yōu)化控制軟件的有效性。還原現(xiàn)場運(yùn)行工況,運(yùn)行軟件,通過觀察實(shí)時曲線來驗證軟件的優(yōu)化控制效果。效果顯示本文開發(fā)的優(yōu)化控制軟件能夠很好的調(diào)節(jié)出磨提升機(jī)電流到達(dá)設(shè)定值,使得磨機(jī)負(fù)荷處于穩(wěn)定狀態(tài)。
[Abstract]:Grinding machine is one of the important equipment in cement grinding system. The stability of mill load directly affects the grinding efficiency of grinding machine and the quality of cement finished product. Therefore, it is of great significance to study the mill load. With the improvement of automation level, the requirements of model research and optimization control of mill automatic control system will be higher and higher. Because the mill is a complex industrial controlled object with nonlinear, pure lag and strong coupling, it is difficult to obtain good control effect by using conventional control algorithm. In this paper, the automatic control system of a cement mill is taken as the research object. On the basis of understanding the present research situation of cement grinding system at home and abroad, the intelligent predictive control is proposed to optimize the mill load control. According to the combined grinding process, the speed of the separator is selected as the input of the system, the current of the output hoist is taken as the output of the system, and the predictive control strategy based on neural network is adopted to optimize the load of the mill. On this basis, the upper computer software of the mill automatic control system is developed. The main work of this paper is as follows: (1) Identification of mill load model and design of predictive controller using three-layer forward BP neural network. First, the input and output data are collected to identify the order of the input and output delay of the system model, and then the neural network model is used as the prediction model, and the N-R rolling optimization method is used to calculate the future control sequence of the system. Feedback correction is used to overcome the model prediction error caused by disturbance. Finally, the effectiveness of the algorithm in the cement mill automatic control system is verified by Matlab simulation. (2) the predictive control software is developed by using the mixed programming of MFC and Matlab in VC. The algorithm program written in m file is compiled into VC's DLL dynamic link library file by Matlab Compiler method, and the function of algorithm module is realized by calling DLL file in VC, and the function of data reading and writing is realized by OPC technology. In order to display the dynamic effect, the TeeChart5 control is imported into the MFC program to display the changing trend of the grinding hoist current in real time in order to realize the design of the user interface. (3) for the practical application of the project, the effectiveness of the optimized control software is verified. The optimal control effect of the software is verified by observing the real-time curve. The results show that the optimal control software developed in this paper can adjust the current of the mill hoist to the set value and make the mill load stable.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ172.632;TP273

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉石紅;;基于T-S模糊模型的非線性系統(tǒng)廣義預(yù)測控制[J];工業(yè)儀表與自動化裝置;2016年06期

2 林小峰;孔偉凱;;基于ELM的水泥立磨生料細(xì)度ADP控制[J];系統(tǒng)仿真學(xué)報;2016年11期

3 鄭鵬;;基于LM-BP神經(jīng)網(wǎng)絡(luò)的軟件質(zhì)量綜合評價[J];山東理工大學(xué)學(xué)報(自然科學(xué)版);2016年03期

4 代高富;符金偉;周勝;張冬凱;;基于模型預(yù)測控制的MMC-HVDC系統(tǒng)控制策略研究[J];電力系統(tǒng)保護(hù)與控制;2016年10期

5 周烈;張建華;;VPM預(yù)粉磨輥磨及粉磨工藝探析[J];水泥技術(shù);2016年02期

6 李明河;周磊;王健;;基于LM算法的溶解氧神經(jīng)網(wǎng)絡(luò)預(yù)測控制[J];農(nóng)業(yè)機(jī)械學(xué)報;2016年06期

7 郭光文;張馳;李培杰;安肇勇;;壓鑄生產(chǎn)信息OPC客戶端的開發(fā)研究[J];特種鑄造及有色合金;2016年02期

8 陳黔;;水泥廠磨機(jī)系統(tǒng)工藝參數(shù)的優(yōu)化和平衡問題的研究[J];四川水泥;2016年01期

9 謝小云;;Ф4.2m×12.5m水泥粉磨系統(tǒng)的改造[J];水泥技術(shù);2015年05期

10 代桃桃;張強(qiáng);申濤;;水泥磨機(jī)負(fù)荷的LPV預(yù)測控制[J];濟(jì)南大學(xué)學(xué)報(自然科學(xué)版);2016年02期

相關(guān)碩士學(xué)位論文 前8條

1 任俊超;球磨機(jī)系統(tǒng)先進(jìn)控制算法研究及應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2015年

2 王杰;基于軟約束的水泥磨預(yù)測控制算法研究[D];燕山大學(xué);2013年

3 任萬杰;水泥粉磨系統(tǒng)的建模與控制方法研究[D];濟(jì)南大學(xué);2013年

4 胡紅澤;新型干法水泥生產(chǎn)過程優(yōu)化控制策略研究[D];浙江大學(xué);2012年

5 梁耀瑞;基于遺傳算法的自適應(yīng)PID控制器在控制系統(tǒng)中的應(yīng)用[D];華北電力大學(xué);2012年

6 王榮光;基于DMC的磨機(jī)負(fù)荷優(yōu)化控制[D];濟(jì)南大學(xué);2011年

7 劉志鵬;水泥預(yù)粉磨優(yōu)化控制系統(tǒng)的設(shè)計與研究[D];浙江大學(xué);2012年

8 賀永剛;JD水泥公司5S現(xiàn)場管理應(yīng)用研究[D];西北大學(xué);2007年

,

本文編號:2198496

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2198496.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2bb1b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com