基于極限學(xué)習(xí)機(jī)的空間配準(zhǔn)方法
發(fā)布時(shí)間:2018-08-09 12:40
【摘要】:對(duì)極限學(xué)習(xí)機(jī)的特點(diǎn)及適用條件進(jìn)行了探討,在此基礎(chǔ)上提出和實(shí)現(xiàn)了一種基于極限學(xué)習(xí)機(jī)的空間配準(zhǔn)方法,并與基于廣義最小二乘和神經(jīng)網(wǎng)絡(luò)的配準(zhǔn)方法在多種場(chǎng)景下進(jìn)行了仿真比較,結(jié)果驗(yàn)證了基于極限學(xué)習(xí)機(jī)的空間配準(zhǔn)方法的性能優(yōu)勢(shì)。
[Abstract]:The characteristics and applicable conditions of extreme learning machines are discussed. On this basis, a spatial registration method based on limit learning machine is proposed and implemented. The simulation is compared with the registration method based on generalized least squares and neural networks in a variety of scenes. The results prove the spatial registration method based on the limit learning machine. Performance advantages.
【作者單位】: 北方自動(dòng)控制技術(shù)研究所;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61371064)
【分類(lèi)號(hào)】:E926.4;TP181
本文編號(hào):2174103
[Abstract]:The characteristics and applicable conditions of extreme learning machines are discussed. On this basis, a spatial registration method based on limit learning machine is proposed and implemented. The simulation is compared with the registration method based on generalized least squares and neural networks in a variety of scenes. The results prove the spatial registration method based on the limit learning machine. Performance advantages.
【作者單位】: 北方自動(dòng)控制技術(shù)研究所;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61371064)
【分類(lèi)號(hào)】:E926.4;TP181
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 劉禎;朱元武;樊興;武云鵬;;網(wǎng)絡(luò)化火控系統(tǒng)空間配準(zhǔn)技術(shù)仿真[J];火力與指揮控制;2014年06期
,本文編號(hào):2174103
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2174103.html
最近更新
教材專(zhuān)著