基于Pareto人工魚(yú)群算法的多目標(biāo)斗鏈?zhǔn)讲鹦毒€平衡特性研究
[Abstract]:The rapid development of science and technology has accelerated the pace of product upgrading, resulting in a large number of used mechanical and electrical products. The realization of disassembly and recycling of used mechanical and electrical products not only meets the requirements of green manufacturing, but also alleviates the increasingly tight demand for resources, and brings enormous economic benefits to disassembly enterprises. Disassembly line is the inevitable choice to realize large-scale and automatic disassembly operation. The research of disassembly line balance has important theoretical significance and extensive practical application value. In the traditional production line, it is difficult to achieve the balance of the production line with the fixed workstation beat time, but the organization mode of the bucket chain production has a high balance. The theoretical analysis and numerical simulation show that the hopper chain system is still balanced when the retrieval speed is considered. Furthermore, the mathematical model of disassembly line balance problem based on bucket chain production mode is established. The model includes several optimization objectives, which not only considers the balance characteristics of production line, but also needs to disassemble parts with high demand and harm as soon as possible. In order to meet the requirements of advanced manufacturing processes such as economy, efficiency, safety and environmental protection, the times of disassembly direction change are reduced as much as possible. In order to solve the problem of multi-objective disassembly line balance, a multi-objective artificial fish swarm algorithm based on Pareto solution set is designed in order to overcome the problems of multiple conflicting targets in the traditional method. In order to improve the optimization ability of artificial fish, the random cross operation was used to guide the artificial fish to forage in the direction of optimal disassembly. The non-inferior solutions in the process of foraging, clustering and rear-end behavior are continuously selected by crowding distance. The diversity of the results of each behavior is realized, and the non-inferior solutions in the external files are added to the iterative population of the algorithm, thus speeding up the convergence of the algorithm. The proposed algorithm is proved to be convergent and distributed by an example, and various balancing schemes are obtained by solving the examples of different scale tasks. Compared with the results of the existing algorithms, the validity and superiority of the proposed algorithm are verified. The established model and the designed algorithm are applied to the actual disassembly line, and 16 balancing schemes are obtained in solving the engine bucket chain disassembly line balance problem with the same retrieval speed. In solving the balance problem of printer bucket disassembly line with different retrieval speed, 20 kinds of balancing schemes were obtained, which realized the balance of production operation, increased the effective working time, and provided a wide range of decision-making space for decision makers. Therefore, the model and the algorithm designed in this paper can solve the problem of disassembly line balance, effectively improve the line balance problem, and have a strong applicability and broad application prospects.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP278;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾三友;蔡振華;張青;康立山;;一種評(píng)估近似Pareto前沿多樣性的方法[J];軟件學(xué)報(bào);2008年06期
2 周瑾;謝唯;;綜合使用序列分析和Pareto圖對(duì)工序集合的截取(英文)[J];上海第二工業(yè)大學(xué)學(xué)報(bào);2008年03期
3 ;Design of high performance multilayer microwave absorbers using fast Pareto genetic algorithm[J];Science in China(Series E:Technological Sciences);2009年09期
4 蔡瑞;齊佳音;;基于改進(jìn)的Pareto/NBD模型預(yù)測(cè)博客用戶在線行為[J];統(tǒng)計(jì)與信息論壇;2013年06期
5 張崗?fù)?姜曉兵;王書(shū)振;;網(wǎng)絡(luò)最大流Pareto擴(kuò)充研究[J];電子科技大學(xué)學(xué)報(bào);2006年01期
6 董紅斌;黃厚寬;何軍;侯薇;穆成坡;;一種混合策略的Pareto演化規(guī)劃[J];模式識(shí)別與人工智能;2006年06期
7 周秀玲;孫承意;;Pareto-MEC算法及其收斂性分析[J];計(jì)算機(jī)工程;2007年10期
8 宋冠英;李海楠;鄒玉靜;;一種基于Pareto解集的無(wú)約束條件的多目標(biāo)粒子群算法[J];機(jī)械工程師;2008年05期
9 陶媛;吳耿鋒;胡珉;;基于Pareto的多目標(biāo)進(jìn)化免疫算法[J];計(jì)算機(jī)應(yīng)用研究;2009年05期
10 ;Diversity of Pareto front: A multiobjective genetic algorithm based on dominating information[J];Journal of Control Theory and Applications;2010年02期
相關(guān)會(huì)議論文 前10條
1 ;A Pareto-Based Differential Evolution Algorithm for Multi-objective Optimization Problems[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
2 周秀玲;孫承意;;Pareto-MEC算法的收斂性分析[A];2005年中國(guó)智能自動(dòng)化會(huì)議論文集[C];2005年
3 ;Multiobjective Optimization with Competitive Coevolutionary Genetic Algorithms[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
4 ;Study on New Coordination Mechanisms of Generalized Supply Chains with Loss-averse Agents[A];2009中國(guó)控制與決策會(huì)議論文集(3)[C];2009年
5 樊鐵成;馬孜;;Pareto前沿在航線優(yōu)化中的應(yīng)用[A];第16屆中國(guó)過(guò)程控制學(xué)術(shù)年會(huì)暨第4屆全國(guó)故障診斷與安全性學(xué)術(shù)會(huì)議論文集[C];2005年
6 徐安察;湯銀才;;Pareto分布下屏蔽數(shù)據(jù)的貝葉斯統(tǒng)計(jì)分析及其應(yīng)用[A];技術(shù)融合創(chuàng)新·可靠服務(wù)企業(yè)·安全產(chǎn)品制勝——2013年全國(guó)機(jī)械行業(yè)可靠性技術(shù)學(xué)術(shù)交流會(huì)暨第四屆可靠性工程分會(huì)第五次全體委員大會(huì)論文集[C];2013年
7 陳銀美;石連栓;;一種改進(jìn)的求解均勻分布Pareto解集的多目標(biāo)遺傳算法[A];中國(guó)運(yùn)籌學(xué)會(huì)第十屆學(xué)術(shù)交流會(huì)論文集[C];2010年
8 韓松;魏權(quán)齡;;非參數(shù)DEA模型最優(yōu)解的(弱)Pareto性質(zhì)研究[A];中國(guó)運(yùn)籌學(xué)會(huì)第七屆學(xué)術(shù)交流會(huì)論文集(上卷)[C];2004年
9 樊鐵成;馬孜;羅勛杰;;Pareto遺傳算法在集裝箱配載優(yōu)化中的應(yīng)用[A];第二十四屆中國(guó)控制會(huì)議論文集(下冊(cè))[C];2005年
10 呂萍;李晴;宋吟秋;;考慮運(yùn)營(yíng)成本的公路Pareto有效BOT合同[A];中國(guó)系統(tǒng)工程學(xué)會(huì)第十八屆學(xué)術(shù)年會(huì)論文集——A02管理科學(xué)[C];2014年
,本文編號(hào):2168925
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2168925.html