油液中鐵磁金屬顆粒檢測(cè)儀研究
[Abstract]:The condition detection of lubricating oil is an important part of ensuring the safe and stable operation of mechanical equipment. Through accurate on-line analysis and monitoring of the condition of lubricating oil, it can monitor the wear of mechanical equipment, predict the occurrence of failure, and carry out maintenance and repair in time. Can greatly reduce maintenance costs, reduce losses, improve production efficiency. Iron and its alloy materials are important components of mechanical equipment parts. When the mechanical parts are worn, ferromagnetic abrasive particles will appear in the lubricating oil path and flow with the oil. Therefore, the wear degree of mechanical equipment can be obtained by detecting ferromagnetic particles in oil to ensure the safety and stability of production. The aim of this paper is to develop a practical ferromagnetic metal particle detector in oil, which adopts the design principle of double excitation reverse inductance sensor. In this paper, the influence parameters of the metal particle detection sensor in oil are studied, and the factors influencing the sensor's detection response are analyzed, and the methods of reducing the error and improving the stability are analyzed. Through simulation software, the finite element two-dimensional axisymmetric model of the sensor is established, and the basic design parameters of the sensor which can produce large output are determined. Then according to the theoretical basis provided by the simulation model, the metal particle detection sensor is designed and manufactured, and the related circuit of the ferromagnetic metal particle detector is designed and manufactured, and the performance of the sensor is verified by experiments. Finally, a data acquisition system based on single chip microcomputer is designed to collect the output of the sensor, and the preliminary research and design of the metal particle detector in oil are completed. Through the preliminary experiment, the metal particle detector can detect more than 100 渭 m ferromagnetic metal particles. The main innovations of this paper are as follows: (1) in the COMSOL simulation experiment, a new "jacket" model, which is different from the traditional "inner clip" basic model, is established, and the new model is compared and studied, and the results of the simulation experiment which are superior to the basic model are obtained. The research innovation of sensor model is obtained, and the basic model and the new model are verified by the simulation results. (2) the AC power supply with adjustable frequency of 2400~3000Hz is designed. As a special exciting power source for sensor. (3) the design of traditional unit gain filter is improved, and the design of bandpass filter with gain is realized. The circuit structure is simplified and good filtering and amplification effect is achieved. (4) A data acquisition system is designed for the project, which combines the sensor with the single-chip microcomputer data acquisition system, and detaches from the measuring instrument (such as oscilloscope, inductance parameter measuring instrument, etc.) Optical instrument), the basic formation of a complete set of instruments.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH70;TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫成杰;丁冬梅;陸沁瑩;陸澤波;;油液污染度分析在油液監(jiān)測(cè)技術(shù)中的應(yīng)用[J];潤(rùn)滑油;2017年01期
2 孫曉永;張琦;潘孟春;陳棣湘;翁飛兵;萬(wàn)成彪;;基于COMSOL Multiphysics的目標(biāo)磁特性仿真分析[J];中國(guó)測(cè)試;2017年01期
3 余海生;徐婉靜;;高端MOS管柵極驅(qū)動(dòng)技術(shù)研究[J];微電子學(xué);2016年03期
4 何炎新;白仲文;余肇勇;;傳感器介紹及應(yīng)用[J];科技經(jīng)濟(jì)導(dǎo)刊;2016年14期
5 陸帥華;王鑫;朱兆青;;基于STC15W4K58S4的高精度SPWM移相控制器設(shè)計(jì)[J];福建電腦;2015年12期
6 劉芊;曹江勇;羅勇;楊韻霞;倪江平;孫晶;鄧科;;基于COMSOL Multiphysics的磁場(chǎng)仿真分析[J];大學(xué)物理實(shí)驗(yàn);2015年05期
7 肖元芳;王小華;杭緯;;中國(guó)原子光譜發(fā)展近況概述[J];光譜學(xué)與光譜分析;2015年09期
8 薄昭;王強(qiáng);張興明;張洪朋;;過(guò)流速度影響微流體油液顆粒含量檢測(cè)結(jié)果的實(shí)驗(yàn)研究[J];機(jī)床與液壓;2015年17期
9 邱麗娟;宣征南;張興芳;;油液在線監(jiān)測(cè)技術(shù)研究進(jìn)展[J];傳感器與微系統(tǒng);2015年04期
10 王志娟;趙軍紅;丁桂甫;;新型三線圈式滑油磨粒在線監(jiān)測(cè)傳感器[J];納米技術(shù)與精密工程;2015年02期
相關(guān)碩士學(xué)位論文 前9條
1 高萍;油液中金屬顆粒檢測(cè)技術(shù)研究[D];濟(jì)南大學(xué);2016年
2 李晶晶;基于MATLAB與COMSOL的磁場(chǎng)仿真系統(tǒng)研究[D];吉林大學(xué);2015年
3 陳嫭;車(chē)輛傳動(dòng)油液磨粒在線監(jiān)測(cè)的信號(hào)處理技術(shù)研究[D];北京理工大學(xué);2015年
4 馮文鵬;潤(rùn)滑油液在線磨粒監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與研究[D];燕山大學(xué);2013年
5 張佳瑞;基于單片機(jī)的數(shù)據(jù)采集和無(wú)線數(shù)據(jù)傳輸系統(tǒng)設(shè)計(jì)[D];西南交通大學(xué);2013年
6 傅艦艇;油路磨粒檢測(cè)方法與電路研究[D];電子科技大學(xué);2012年
7 徐元強(qiáng);數(shù)字同軸全息油液磨粒檢測(cè)技術(shù)的初步研究[D];山東大學(xué);2010年
8 陳書(shū)涵;雙激勵(lì)螺旋管式磨粒傳感器特性研究[D];中南大學(xué);2005年
9 張亦軍;反向雙激勵(lì)螺管磨粒傳感器設(shè)計(jì)及其特性研究[D];中南大學(xué);2004年
,本文編號(hào):2163491
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2163491.html