基于穿戴式的人體跌倒檢測系統(tǒng)研究與設(shè)計
[Abstract]:Human posture plays an important role in many fields, such as rehabilitation training for patients, interactive games, special effects in movies and so on. How to detect and recognize human posture quickly and accurately has become a hot research topic. At present, human attitude detection schemes can be divided into two categories: one is the determination of posture by detecting the changes of human body environment information such as human body video image, sound, electromagnetic wave, infrared ray and so on; Secondly, some devices such as triaxial acceleration sensor, pressure sensor and inertial sensor are used to infer and recognize human posture. Combined with the fact that there are many empty nest elderly people in our country, and the frequent fall accidents occur, and sometimes can not get timely rescue after falling. Considering the convenience of carrying, low power consumption and good real-time performance, the system designed a three-axis acceleration sensor for human body attitude detection system, which is suitable for the waist position of the human body. In addition, the system designed automatic help function and active help function. You can get help in time after an old man falls down. The detection system consists of signal acquisition module, processing module and communication module. The sensor module is responsible for collecting acceleration data and preprocessing, processing module extracts the acceleration SMVA, the differential absolute average of acceleration M4DS, the acceleration signal intensity SM4, the human body tilt angle BT4 and other related characteristic values. The communication module is responsible for locating the human body and sending short messages for help. According to the detected data, the current commonly used threshold method is used in this paper. The improved threshold method (multilevel fall detection algorithm) and the singular value decomposition algorithm of support vector machine (SVM) are used in the fall detection experiment. Compared with the accuracy of the three algorithms, the improved multi-level attitude detection algorithm has higher accuracy than the general threshold method, but the accuracy of the improved multi-level attitude detection algorithm is not far from that of the support vector machine algorithm. But multilevel fall detection algorithm is better than support vector machine algorithm in real time. Considering the real-time and accuracy, it is decided to choose the multi-level fall detection algorithm as the final scheme. On this basis, the software and hardware design of the fall detection system is completed. By testing all the functions of the system, we can realize the function of human fall detection and send out the short message automatically. The accuracy and real-time of the detection effect reach the expected goal.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉莉;鄭冬云;劉曉軍;;基于MPU6050的老年人跌倒監(jiān)測系統(tǒng)設(shè)計[J];中國醫(yī)療器械雜志;2015年05期
2 韓盈黨;李哲;;MEMS加速度傳感器的數(shù)據(jù)采集和預(yù)處理[J];儀表技術(shù)與傳感器;2015年02期
3 付棉;胡才友;呂澤平;陽初玉;史曉紅;楊澤;;老年人跌倒的流行現(xiàn)狀及危險因素分析[J];中國老年保健醫(yī)學(xué);2014年03期
4 姜典卓;高玲;林芹蘭;;老年人跌倒危險因素研究[J];求醫(yī)問藥(下半月);2013年10期
5 李正周;陳聯(lián)濤;劉勇;高媛;于帆;;人體跌倒的魯棒檢測方法[J];數(shù)據(jù)采集與處理;2013年05期
6 李戰(zhàn)明;王曉萌;;基于新型MEMS傳感器的老年人跌倒檢測系統(tǒng)設(shè)計[J];工業(yè)儀表與自動化裝置;2013年04期
7 徐寧;王偉;楊玉婷;孟祥貴;;便攜式人體姿態(tài)實時檢測系統(tǒng)設(shè)計[J];儀表技術(shù);2013年06期
8 朱勇;張研;宋佳;邱天爽;;基于傾角的跌倒檢測方法與系統(tǒng)研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2013年01期
9 王榮;章韻;陳建新;;基于三軸加速度傳感器的人體跌倒檢測系統(tǒng)設(shè)計與實現(xiàn)[J];計算機(jī)應(yīng)用;2012年05期
10 薛源;高向陽;;基于多傳感器信息融合的跌倒監(jiān)測系統(tǒng)設(shè)計[J];武漢理工大學(xué)學(xué)報(信息與管理工程版);2011年05期
相關(guān)博士學(xué)位論文 前1條
1 佟麗娜;基于力學(xué)量信息獲取系統(tǒng)的人體摔倒過程識別方法研究[D];中國科學(xué)技術(shù)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 王晴;便攜式老年人健康監(jiān)護(hù)系統(tǒng)的設(shè)計與實現(xiàn)[D];昆明理工大學(xué);2016年
2 張金橋;基于人體姿態(tài)的跌倒檢測算法研究與應(yīng)用[D];大連海事大學(xué);2016年
3 秦f ;基于傳感器的跌倒檢測系統(tǒng)的研究與實現(xiàn)[D];江南大學(xué);2015年
4 薛玉璽;基于加速度傳感器的人體姿態(tài)識別系統(tǒng)研究[D];河北科技大學(xué);2014年
5 吳志強(qiáng);基于智能手機(jī)的人體跌倒檢測技術(shù)的研究與應(yīng)用[D];南方醫(yī)科大學(xué);2014年
6 何杰;視頻監(jiān)控中的人體異常行為識別方法研究[D];重慶大學(xué);2014年
7 毛立昱;基于手機(jī)的跌倒監(jiān)測系統(tǒng)設(shè)計與實現(xiàn)[D];電子科技大學(xué);2014年
8 李強(qiáng);跌倒檢測關(guān)鍵技術(shù)的研究與應(yīng)用[D];北京工業(yè)大學(xué);2013年
9 周敏;基于移動終端的跌倒檢測方法研究[D];湘潭大學(xué);2013年
10 楊星;基于S3C2440平臺的Linux系統(tǒng)移植[D];北京交通大學(xué);2011年
,本文編號:2159068
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2159068.html