新型納米材料構(gòu)建的分子印跡電化學(xué)傳感器的研究與應(yīng)用
[Abstract]:Molecularly imprinted polymer (MIP) is a high molecular material capable of identifying target substances specifically, with predetermined selectivity, specificity and wide suitability. In this paper, three kinds of molecularly imprinted electrochemical sensors are prepared and used to detect sodium estrone sulfate, metronidazole and dopamine, which are divided into 3 parts: (1) carbon paste electrode based on molecularly imprinted polymer modified by molecular imprinting technology. In the study of the test of estrone sodium sulfate, the traditional bulk polymerization method was used to prepare estrone 3-sulfate sodium salt (ESS) molecularly imprinted polymer, and a small amount of liquid paraffin was mixed with ESS-MIP and graphite powder as adhesive, and it was mixed well and then filled into the electrode tube, and the molecularly imprinted polymerization was prepared. The modified carbon paste electrode (carbon paste electrode, CPE) is used as an electrochemical sensor for the detection of ESS. Among them, the proportion of the template molecules, functional monomers, crosslinker three, the polymerization reaction solvent and the elution solvent in the ESS-MIP preparation process are optimized, and the polymer and graphite powder in the carbon paste electrode are filled. The mass ratio is optimized. The morphology and structure of the imprinted polymer materials are characterized by scanning electron microscope and Fourier infrared spectrometer. Under the optimum conditions, the sensor has good selectivity and wide linear range (4 x 10-12~6.0 x 10-9 M) for the detection of ESS, and the detection limit is up to 1.2 * 10-12. M (S/N=3). In addition, the sensor has been successfully applied to the detection of ESS in real pregnant horse urine samples. Compared with high performance liquid chromatography (HPLC), it is found that the results are accurate, reliable, reproducible, rapid and inexpensive, and it is expected to play a role in real time detection. (2) nano porous microlines based on molecularly imprinted polymer are used to detect the nail. The Au-Ag alloy microrod (AMR) is used in nitrazole to obtain the gold and silver alloy wires (nanoporous Au-Ag alloy microrod, NPAMR) on the surface of the surface with a simple dealloying method, which is used as the working electrode to modify the molecularly imprinted polymer film on its surface by electropolymerization, and the molecular imprint is obtained. A trace polymer modified nano porous gold and silver alloy wire (MIP/NPAMR) electrode. The electrode can be used as a working electrode without any additional commercialized electrode support. This work uses this unsupported electrode to complete the quantitative analysis of metronidazole (metronidazole, MNZ). A series of experimental parameters in the process of sensor preparation are carried out. The morphology and elemental analysis of MNZ-MIP/NPAMR were carried out by scanning electron microscope and energy spectrum analysis. The surface area of the Dealloyed sensor was calculated by chronoelectric method. The results showed that the NPAMR with 3D structure had high specific surface area and good electron transfer ability. [Fe (CN) 6]3-/4- was redox and redox. As an current indicator, the target molecule MNZ is quantitatively analyzed by cyclic voltammetry and the electrochemical performance of MNZ-MIP/NPAMR is investigated. The experimental results show that the sensor has a ultra low detection limit (2.7 x 10-14 M) and a wide linear range (8 x 10-14~ 1 x 10-6 M) without additional commercial electrode support. The characteristics also help to reduce the cost. In addition, the sensor has been successfully applied to the detection of MNZ in real samples (fish and tablets). The results are accurate, reproducible, and rapid detection. It is expected to play a role in the trace detection of more biological and chemical substances. (3) nano porous microlines based on molecularly imprinted polymer are used to detect trace amounts. The preparation method of nano porous gold and silver alloy microwires in dopamine is the same as (2). Also, the method of electropolymerization, using dopamine (dopamine, DA) as the template molecule, has formed a layer of molecularly imprinted polymer film on the surface of NPAMR. After elution, the MIP modified electrochemical sensor (MIP/NPAMR) is obtained. The pH of the polymerization solution in the polymerization process. The ratio of the value and the template molecule to the functional monomer was optimized. The morphology of NPAMR and MIP/NPAMR was characterized by scanning electron microscope. The composition of the elements in NPAMR and MIP/NPAMR was analyzed by energy spectrum analysis. The electrochemical properties of MIP/NPAMR were evaluated by cyclic voltammetry and impedance analysis. The results show that the proposed electrochemical sensor has a ultra low detection limit (7.63 x 10-14 M) and a wide linear range (2 x 10-13~2.0 * 10-8 M). In addition, the sensor has been successfully applied to the detection of DA in the actual biological samples (rabbit serum and rat brain tissue).
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻】
相關(guān)期刊論文 前10條
1 張路;趙燕萍;張閃閃;宋旺弟;周維維;李迎春;;雙模板分子印跡聚合物在奶粉檢驗中的應(yīng)用研究[J];化學(xué)試劑;2015年06期
2 劉江;劉媛;李迎春;唐輝;吳冰冰;;兩步蒸餾沉淀聚合法制備紅霉素表面分子印跡聚合物及其性能研究[J];高分子學(xué)報;2014年12期
3 張進;熊和琴;姚桃花;羅榮琴;李世杰;;分子印跡電化學(xué)傳感器檢測環(huán)境中特丁津研究[J];環(huán)境科學(xué)與技術(shù);2014年05期
4 丁昊;楊青;徐帆;閆若冰;;電導(dǎo)式陣列傳感器的優(yōu)化[J];信息通信;2014年04期
5 姚軍;趙倩;高曉黎;;LC-MS法檢測新疆孕馬尿中的3種主要結(jié)合雌激素[J];華西藥學(xué)雜志;2014年02期
6 薩仁托雅;張峰;盧亞楠;李偉;;分子印跡技術(shù)制備與應(yīng)用進展[J];應(yīng)用化工;2014年01期
7 魏小平;常川;李建平;;分子印跡電化學(xué)傳感器選擇性識別及電催化檢測多巴胺[J];化學(xué)學(xué)報;2013年06期
8 孫兆輝;連惠婷;孫向英;劉斌;;石墨烯摻雜對分子印跡電化學(xué)傳感器的增敏作用[J];華僑大學(xué)學(xué)報(自然科學(xué)版);2012年04期
9 姚軍;高曉黎;高茜;曾立軍;王巖;;新疆孕馬尿中主要結(jié)合雌激素定性定量方法研究[J];藥物分析雜志;2011年08期
10 王穎;李楠;;分子印跡技術(shù)及其應(yīng)用[J];化工進展;2010年12期
相關(guān)博士學(xué)位論文 前9條
1 白慧萍;幾種分子印跡電化學(xué)傳感器的研制及應(yīng)用[D];云南大學(xué);2015年
2 崔敏;基于納米材料的電化學(xué)傳感器及其應(yīng)用研究[D];北京理工大學(xué);2014年
3 吳敏;納米材料修飾電化學(xué)傳感器及其在有害物質(zhì)檢測中的應(yīng)用研究[D];華東師范大學(xué);2014年
4 黎雪蓮;納米復(fù)合材料的制備、性質(zhì)及其在生物分析中的應(yīng)用[D];西南大學(xué);2013年
5 劉瑛;基于電聚合技術(shù)的新型分子印跡傳感器的研究和應(yīng)用[D];江南大學(xué);2013年
6 劉召娜;新型納米結(jié)構(gòu)材料在電化學(xué)傳感器中的研究與應(yīng)用[D];山東大學(xué);2012年
7 楊素玲;碳納米管復(fù)合薄膜修飾電極的構(gòu)筑及其在藥物分析中的應(yīng)用[D];鄭州大學(xué);2012年
8 邱華軍;納米多孔金屬材料在生物催化和生物傳感中的應(yīng)用研究[D];山東大學(xué);2011年
9 張淑平;基于碳納米管的電流型生物傳感器及在農(nóng)藥檢測中的應(yīng)用研究[D];上海大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 龍芳;多納米復(fù)合材料增敏印跡電化學(xué)傳感器的研制及應(yīng)用[D];吉首大學(xué);2016年
2 王思遠(yuǎn);基于金屬納米顆粒修飾碳納米材料制備納米復(fù)合物構(gòu)建電化學(xué)傳感器對生化小分子多組分同時檢測的研究[D];西南大學(xué);2016年
3 朱麗麗;基于分子印跡聚合物的電化學(xué)傳感器在生物小分子檢測中的應(yīng)用[D];南京師范大學(xué);2016年
4 劉媛;幾種納米復(fù)合材料的制備及其在電化學(xué)傳感器中的應(yīng)用[D];石河子大學(xué);2015年
5 鄭有虎;紅霉素分子印跡聚合物制備及免疫檢測應(yīng)用研究[D];大連海洋大學(xué);2015年
6 洪旭城;新型分子印跡聚合物的制備及其性能研究[D];廣東工業(yè)大學(xué);2015年
7 徐麗娟;基于多壁碳納米管修飾的分子印跡電化學(xué)傳感器的研制與應(yīng)用[D];西北師范大學(xué);2015年
8 劉海;接枝型分子印跡膜的制備及其農(nóng)藥電位型傳感器的構(gòu)建[D];中北大學(xué);2015年
9 趙乾;分子印跡電化學(xué)傳感器的制備及其應(yīng)用[D];大連理工大學(xué);2014年
10 吳瑩;分子印跡電化學(xué)傳感器的研究[D];吉林大學(xué);2014年
,本文編號:2154435
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2154435.html