天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于卷積神經(jīng)網(wǎng)絡(luò)的海洋中尺度渦旋檢測(cè)算法研究

發(fā)布時(shí)間:2018-07-29 21:02
【摘要】:中尺度渦又稱為海洋“風(fēng)暴”,對(duì)海洋能量和物質(zhì)運(yùn)輸具有重大作用,具有重大的研究?jī)r(jià)值。傳統(tǒng)的基于流場(chǎng)幾何特征和高度異常值的渦旋檢測(cè)算法不僅復(fù)雜度高,而且閡值設(shè)置受人為影響比較大,適用范圍有限。卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)的算法之一[1],已經(jīng)被廣泛應(yīng)用在圖像的識(shí)別方面。本文致力于將卷積神經(jīng)網(wǎng)絡(luò)引入海洋中尺度渦旋檢測(cè),以期提高渦旋檢測(cè)的效率和精確度。本文在基于對(duì)現(xiàn)有渦旋檢測(cè)方法研究的基礎(chǔ)上,結(jié)合卷積神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別方面的有效應(yīng)用,將卷積神經(jīng)網(wǎng)絡(luò)引入到渦旋檢測(cè)場(chǎng)景中,實(shí)現(xiàn)基于卷積神經(jīng)網(wǎng)絡(luò)的渦旋檢測(cè)算法。研究?jī)?nèi)容主要分為兩部分:一方面,本文實(shí)現(xiàn)基于流場(chǎng)幾何特征和基于高度異常值的渦旋檢測(cè)算法。分析海洋渦旋在流場(chǎng)和高度異常中的特征,以特征約束方式實(shí)現(xiàn)渦旋檢測(cè)。對(duì)比分析兩種算法的準(zhǔn)確度以及誤檢和漏檢的原因。結(jié)果證明:這兩種算法實(shí)現(xiàn)較容易,但對(duì)計(jì)算機(jī)的計(jì)算性能比較高,閡值比較敏感,容易造成誤檢或漏檢,檢測(cè)準(zhǔn)確率比較低,適合數(shù)據(jù)量較少的渦旋檢測(cè)。另一方面,本文實(shí)現(xiàn)基于CNN的渦旋檢測(cè)算法。在分析CNN原理和結(jié)構(gòu)研究的基礎(chǔ)上,將卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用到中尺度渦旋檢測(cè)中。流場(chǎng)再分析數(shù)據(jù)(基于海洋數(shù)值模擬計(jì)算)可以精確表征中尺度渦的速度和方向但渦心不清晰,海面高度數(shù)據(jù)可以準(zhǔn)確反映渦心位置但容易誤檢測(cè)。結(jié)合兩種數(shù)據(jù)特點(diǎn),利用高度異常值進(jìn)行全局檢測(cè),刷選疑似渦旋中心點(diǎn),利用流場(chǎng)幾何特征構(gòu)建檢測(cè)樣本集,對(duì)疑似渦心點(diǎn)進(jìn)行局部檢測(cè),實(shí)現(xiàn)基于CNN的渦旋檢測(cè)。最后將三種方法檢測(cè)結(jié)果進(jìn)行對(duì)比和分析,結(jié)果表明:基于CNN的渦旋檢測(cè)不僅準(zhǔn)確率高,而且更加適合大數(shù)據(jù)背景下的渦旋檢測(cè)。
[Abstract]:Mesoscale vortex, also called ocean "storm", plays an important role in ocean energy and material transport, and has great research value. The traditional vortex detection algorithm based on the geometric characteristics of the flow field and the height outliers not only has a high complexity but also has a large artificial influence on the setting of the threshold value and has a limited range of application. Convolutional Neural Network (Convolutional Neural) is one of the depth learning algorithms, which has been widely used in image recognition. In this paper, convolution neural network is introduced into ocean mesoscale vortex detection in order to improve the efficiency and accuracy of vortex detection. Based on the research of the existing vortex detection methods and the effective application of convolution neural network in image recognition, the convolutional neural network is introduced into the scroll detection scene. The algorithm of vortex detection based on convolution neural network is realized. The research is mainly divided into two parts: on the one hand, a vortex detection algorithm based on the geometric characteristics of the flow field and the height outliers is implemented in this paper. The characteristics of ocean vortices in current field and height anomaly are analyzed, and vortex detection is realized by means of feature constraint. The accuracy of the two algorithms and the causes of false detection and missed detection are compared and analyzed. The results show that these two algorithms are easy to implement, but they have high computing performance and sensitive threshold value, which are easy to cause false detection or miss detection, and are suitable for vortex detection with less data volume. On the other hand, this paper implements a vortex detection algorithm based on CNN. On the basis of analyzing the principle and structure of CNN, the convolution neural network is applied to mesoscale vortex detection. The reanalysis data (based on ocean numerical simulation) can accurately characterize the velocity and direction of mesoscale vortices but the vortex center is not clear. The sea surface height data can accurately reflect the location of vortex center but is easy to be misdetected. Combined with the two kinds of data characteristics, the global detection is carried out by using the height outliers, the suspected vortex center is selected by brushing, the sample set is constructed by using the geometric characteristics of the flow field, the local detection of the suspected vortex center is carried out, and the vortex detection based on CNN is realized. Finally, the results of the three methods are compared and analyzed. The results show that the vortex detection based on CNN is not only accurate, but also more suitable for vortex detection under big data background.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;P714.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李彥冬;郝宗波;雷航;;卷積神經(jīng)網(wǎng)絡(luò)研究綜述[J];計(jì)算機(jī)應(yīng)用;2016年09期

2 陳耀丹;王連明;;基于卷積神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別方法[J];東北師大學(xué)報(bào)(自然科學(xué)版);2016年02期

3 張春玲;夏燕軍;高郭平;;北歐海中尺度渦旋特征分析[J];海洋科學(xué)進(jìn)展;2016年02期

4 鄧俊鋒;張曉龍;;基于自動(dòng)編碼器組合的深度學(xué)習(xí)優(yōu)化方法[J];計(jì)算機(jī)應(yīng)用;2016年03期

5 魏海濤;杜云艷;許開(kāi)輝;;基于浮標(biāo)軌跡的渦旋信息提取算法[J];地球信息科學(xué)學(xué)報(bào);2015年10期

6 尹寶才;王文通;王立春;;深度學(xué)習(xí)研究綜述[J];北京工業(yè)大學(xué)學(xué)報(bào);2015年01期

7 史鶴歡;許悅雷;楊志軍;李帥;李岳云;;基于深度置信網(wǎng)絡(luò)的目標(biāo)識(shí)別方法[J];計(jì)算機(jī)應(yīng)用;2014年11期

8 呂啟;竇勇;牛新;徐佳慶;夏飛;;基于DBN模型的遙感圖像分類[J];計(jì)算機(jī)研究與發(fā)展;2014年09期

9 劉建偉;劉媛;羅雄麟;;深度學(xué)習(xí)研究進(jìn)展[J];計(jì)算機(jī)應(yīng)用研究;2014年07期

10 余進(jìn)程;謝光漢;羅芳;;基于深度學(xué)習(xí)的道路交通標(biāo)志數(shù)字識(shí)別技術(shù)探究[J];數(shù)字技術(shù)與應(yīng)用;2013年12期

相關(guān)博士學(xué)位論文 前4條

1 康燕;基于web的海洋衛(wèi)星數(shù)據(jù)服務(wù)研究[D];浙江大學(xué);2012年

2 朱杰;特征提取和模式分類問(wèn)題在人臉識(shí)別中的應(yīng)用與研究[D];南京理工大學(xué);2012年

3 邵寶民;海洋圖像智能信息提取方法研究[D];中國(guó)海洋大學(xué);2011年

4 何忠杰;西北太平洋副熱帶逆流區(qū)及其鄰近海域中尺度渦研究[D];中國(guó)海洋大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 汪子杰;基于深度神經(jīng)網(wǎng)絡(luò)的視頻煙霧檢測(cè)研究[D];西南交通大學(xué);2016年

2 張弛;基于卷積神經(jīng)網(wǎng)絡(luò)的鞋印圖像分類算法研究[D];大連海事大學(xué);2016年

3 趙興;基于深度置信網(wǎng)集成的高光譜數(shù)據(jù)分類方法研究[D];哈爾濱工業(yè)大學(xué);2015年

4 燕丹晨;基于衛(wèi)星高度計(jì)的中尺度渦自動(dòng)識(shí)別算法研究[D];國(guó)家海洋環(huán)境預(yù)報(bào)中心;2015年

5 劉欣;基于卷積神經(jīng)網(wǎng)絡(luò)的聯(lián)機(jī)手寫漢字識(shí)別系統(tǒng)[D];哈爾濱工業(yè)大學(xué);2015年

6 趙越;中尺度渦環(huán)境下聲傳播分析[D];中國(guó)海洋大學(xué);2015年

7 楚敏南;基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類技術(shù)研究[D];湘潭大學(xué);2015年

8 豐曉霞;基于深度學(xué)習(xí)的圖像識(shí)別算法研究[D];太原理工大學(xué);2015年

9 王光耀;基于機(jī)器學(xué)習(xí)的火災(zāi)檢測(cè)方法研究[D];大連理工大學(xué);2015年

10 王劍云;基于深度神經(jīng)網(wǎng)絡(luò)的表情識(shí)別算法[D];西南科技大學(xué);2015年

,

本文編號(hào):2154008

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2154008.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7a961***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com