基于蟻群算法的機(jī)器人路徑規(guī)劃研究
[Abstract]:The path planning of mobile robot is one of the core contents in the field of robot research, which has the characteristics of complexity, constraint and nonlinearity. Ant colony algorithm (ACA) is a bionic optimization algorithm developed in recent years. It has shown excellent performance and great potential in solving many complex problems. This paper mainly studies the global path planning of mobile robot based on ant colony algorithm in static environment. Firstly, the environmental model is built by grid method, and the improved basic ant colony algorithm is used to plan the path in the grid environment model. These improvements are as follows: the pseudo-random proportional rule is used to replace the random proportional rule for path transfer; It limits the range of grid that ants can select next when they go to the current grid; redefines the heuristic function; and allows ants to select the next grid according to the transfer probability using the method of "roulette". Secondly, three improved algorithms are put forward in view of the shortcomings and defects of basic ant colony algorithm in some aspects: aiming at the stagnation of the algorithm caused by ants falling into obstacle trap in the course of searching path, the ant colony algorithm with abortive strategy is put forward; Aiming at the misguided effect of pheromone on the non-optimal path set up by ant colony in the initial stage of path search, an ant colony algorithm with reward and penalty mechanism is proposed to solve the problem of safe collision avoidance in actual work. Ant colony algorithm based on conserved ants is proposed. Finally, based on ant colony algorithm (ACA) and genetic algorithm (GA), two improved algorithms, namely: GA-ACA algorithm and ACA-GA algorithm, are proposed and applied to robot path planning. In order to verify the validity of the algorithms proposed in this paper, a path planning simulation system for mobile robots based on ant colony algorithm is designed based on MATLAB 7.5 software development environment. Simulation results verify the effectiveness of the proposed algorithm.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2009
【分類號(hào)】:TP301.6
【引證文獻(xiàn)】
相關(guān)期刊論文 前1條
1 張軍高;何永義;方明倫;馮肖維;;基于改進(jìn)蟻群算法的多服務(wù)機(jī)器人路徑規(guī)劃[J];機(jī)電工程;2011年04期
相關(guān)碩士學(xué)位論文 前10條
1 郝彩虹;虛擬漫游系統(tǒng)場(chǎng)景管理與路徑規(guī)劃的研究[D];大連理工大學(xué);2010年
2 李富娟;微重力環(huán)境下Stewart并聯(lián)機(jī)器人研究與分析[D];燕山大學(xué);2012年
3 吳軒;智能橋梁檢測(cè)車工作臂定位與避障控制的研究[D];湖南大學(xué);2011年
4 潘遷;基于改進(jìn)蟻群算法的搜救機(jī)器人路徑規(guī)劃[D];武漢理工大學(xué);2012年
5 白永鋼;真空單向閥的虛擬裝配技術(shù)研究[D];中國工程物理研究院;2012年
6 袁一倩;基于地圖的自動(dòng)導(dǎo)向車路徑優(yōu)化[D];西安科技大學(xué);2012年
7 王國慶;艦載機(jī)甲板調(diào)度路徑優(yōu)化方法研究[D];哈爾濱工程大學(xué);2012年
8 劉保業(yè);基于改進(jìn)遺傳蟻群算法的激光加工路徑規(guī)劃[D];青島理工大學(xué);2012年
9 劉杰;基于環(huán)境地圖的機(jī)器人全局路徑規(guī)劃的研究[D];武漢理工大學(xué);2013年
10 李淼;核電站換料維修仿真系統(tǒng)的研究與實(shí)現(xiàn)[D];華北電力大學(xué);2013年
,本文編號(hào):2152195
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2152195.html