基于深度稀疏學(xué)習(xí)的土壤近紅外光譜分析預(yù)測(cè)模型
發(fā)布時(shí)間:2018-07-29 07:36
【摘要】:提出一種基于深度稀疏學(xué)習(xí)的土壤近紅外光譜分析預(yù)測(cè)模型。首先,使用稀疏特征學(xué)習(xí)方法對(duì)土壤近紅外光譜數(shù)據(jù)進(jìn)行約簡,實(shí)現(xiàn)土壤近紅外光譜內(nèi)容的稀疏表示;然后采用徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)以稀疏表示特征系數(shù)為輸入,以所測(cè)土壤成分為輸出,分別建立土壤有機(jī)質(zhì)、速效磷、速效鉀的非線性預(yù)測(cè)模型。結(jié)果表明用該模型預(yù)測(cè)土壤有機(jī)質(zhì)的含量是可行的,但對(duì)土壤速效磷和速效鉀含量的預(yù)測(cè)還需對(duì)模型做進(jìn)一步的優(yōu)化。
[Abstract]:A soil near infrared spectroscopy (NIR) analysis and prediction model based on deep sparse learning is proposed. Firstly, the sparse feature learning method is used to reduce the soil near infrared spectral data to realize the sparse representation of the soil near infrared spectrum, and then the sparse representation feature coefficient is used as the input of the radial basis function neural network. The nonlinear prediction models of soil organic matter, available phosphorus and available potassium were established by using the measured soil composition as the output. The results showed that it was feasible to predict the content of soil organic matter by using this model, but the prediction of soil available phosphorus and potassium content needed to be further optimized.
【作者單位】: 中國科學(xué)院合肥智能機(jī)械研究所;
【基金】:中國科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(KFJ-EW-STS-069) 國家自然科學(xué)基金(31671586)資助項(xiàng)目~~
【分類號(hào)】:S151.9;O657.33;TP183
[Abstract]:A soil near infrared spectroscopy (NIR) analysis and prediction model based on deep sparse learning is proposed. Firstly, the sparse feature learning method is used to reduce the soil near infrared spectral data to realize the sparse representation of the soil near infrared spectrum, and then the sparse representation feature coefficient is used as the input of the radial basis function neural network. The nonlinear prediction models of soil organic matter, available phosphorus and available potassium were established by using the measured soil composition as the output. The results showed that it was feasible to predict the content of soil organic matter by using this model, but the prediction of soil available phosphorus and potassium content needed to be further optimized.
【作者單位】: 中國科學(xué)院合肥智能機(jī)械研究所;
【基金】:中國科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(KFJ-EW-STS-069) 國家自然科學(xué)基金(31671586)資助項(xiàng)目~~
【分類號(hào)】:S151.9;O657.33;TP183
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李勇,魏益民,王鋒;影響近紅外光譜分析結(jié)果準(zhǔn)確性的因素[J];核農(nóng)學(xué)報(bào);2005年03期
2 褚小立,袁洪福,陸婉珍;基礎(chǔ)數(shù)據(jù)準(zhǔn)確性對(duì)近紅外光譜分析結(jié)果的影響[J];光譜學(xué)與光譜分析;2005年06期
3 楊皓e,
本文編號(hào):2151973
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2151973.html
最近更新
教材專著