基于改進(jìn)遺傳算法的移動機(jī)器人路徑規(guī)劃研究
[Abstract]:The development of mobile robot, which includes sensor technology, machinery, electronics, computer, automation control and artificial intelligence, is an important embodiment of a country's high-tech level and industrial automation. In the research of mobile robot technology, path planning technology is an important part of robot research field, and it is also the necessary foundation and fundamental guarantee for robot to complete the assigned task. In a bounded workspace with obstacles, according to the corresponding evaluation criteria (moving time, path length, energy consumption, etc.), the task is to automatically move from the given starting point to the target point according to the information of the surrounding environment. At the same time, make sure that there is no collision between robot and obstacle and between robot and robot. Up to now, most of the researches have focused on the path planning of the robot in static environment, and the multi-robot system can deal with complex, dynamic and parallel tasks effectively, which has the advantage that the single robot can't compare with each other. Therefore, it is of great significance to study the dynamic and path planning problems in multi-robot environment. At present, the existing optimization algorithms have their own defects in solving the path planning problem, so the search for better algorithms has become a research focus in this field. In view of the strong robustness, parallelism and global search ability of genetic algorithm, an improved genetic algorithm is designed and applied to single robot and multi-robot path planning. The main contents of this thesis are as follows: 1. In this paper, the path planning problem of mobile robot in the global environment is studied. In order to solve the shortcomings of the basic genetic algorithm in solving the robot path planning problems, such as slow convergence speed and easy to fall into local optimum, the genetic algorithm is improved. The artificial potential field method is introduced to initialize the population, and an adaptive selection method based on the evaluation of population diversity is proposed. The adaptive crossover and mutation probability are designed to improve the slow convergence speed and premature convergence of the basic genetic algorithm. The quality of the algorithm is improved. Several simulation experiments in grid environment show that the proposed improved genetic algorithm is feasible and effective. For the path planning problem of mobile robot in dynamic environment, the global path planning and local path planning are combined in the planning process, and an effective collision avoidance strategy is proposed according to the different collision types between the robot and the dynamic obstacle. The simulation results show that this method can effectively guide the robot to avoid obstacles in dynamic environment and obtain the optimal or sub-optimal path. 3. In this paper, the path planning of multi-robot in dynamic environment is studied. In order to solve the problem of path conflict between robots, an effective path coordination strategy is proposed. The experimental results show that the method can achieve multi-robot path planning well.
【學(xué)位授予單位】:安徽工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田欣;劉廣瑞;周文博;郭珂甫;;基于改進(jìn)自適應(yīng)遺傳算法的機(jī)器人路徑規(guī)劃研究[J];機(jī)床與液壓;2016年17期
2 劉曉磊;蔣林;金祖飛;郭晨;;非結(jié)構(gòu)化環(huán)境中基于柵格法環(huán)境建模的移動機(jī)器人路徑規(guī)劃[J];機(jī)床與液壓;2016年17期
3 梁嘉俊;曾碧;何元烈;;基于改進(jìn)勢場柵格法的清潔機(jī)器人路徑規(guī)劃算法研究[J];廣東工業(yè)大學(xué)學(xué)報;2016年04期
4 張毅;代恩燦;羅元;;基于改進(jìn)遺傳算法的移動機(jī)器人路徑規(guī)劃[J];計算機(jī)測量與控制;2016年01期
5 屈鴻;黃利偉;柯星;;動態(tài)環(huán)境下基于改進(jìn)蟻群算法的機(jī)器人路徑規(guī)劃研究[J];電子科技大學(xué)學(xué)報;2015年02期
6 史恩秀;陳敏敏;李俊;黃玉美;;基于蟻群算法的移動機(jī)器人全局路徑規(guī)劃方法研究[J];農(nóng)業(yè)機(jī)械學(xué)報;2014年06期
7 張慶龍;劉國棟;;一種基于改進(jìn)人工勢場的移動機(jī)器人路徑規(guī)劃方法[J];江南大學(xué)學(xué)報(自然科學(xué)版);2014年02期
8 黎萍;朱軍燕;彭芳;楊亮;;基于可視圖與A*算法的路徑規(guī)劃[J];計算機(jī)工程;2014年03期
9 藺婧娜;張立亞;;改進(jìn)的多傳感器融合的機(jī)器人局部路徑規(guī)劃[J];計算機(jī)測量與控制;2013年08期
10 譚民;王碩;;機(jī)器人技術(shù)研究進(jìn)展[J];自動化學(xué)報;2013年07期
相關(guān)博士學(xué)位論文 前3條
1 馬勇;多移動機(jī)器人路徑規(guī)劃研究[D];華中科技大學(xué);2012年
2 劉傳領(lǐng);基于勢場法和遺傳算法的機(jī)器人路徑規(guī)劃技術(shù)研究[D];南京理工大學(xué);2012年
3 劉淑華;復(fù)雜動態(tài)環(huán)境下多機(jī)器人的運(yùn)動協(xié)調(diào)研究[D];吉林大學(xué);2005年
相關(guān)碩士學(xué)位論文 前5條
1 趙媛;基于遺傳算法的移動機(jī)器人路徑規(guī)劃的研究[D];河南科技大學(xué);2014年
2 柯星;動態(tài)環(huán)境下多移動機(jī)器人路徑規(guī)劃研究[D];電子科技大學(xué);2013年
3 萬超;多機(jī)器人系統(tǒng)中的機(jī)器人路徑規(guī)劃研究[D];廣東工業(yè)大學(xué);2011年
4 浦定超;基于遺傳算法的移動機(jī)器人路徑規(guī)劃的研究[D];合肥工業(yè)大學(xué);2010年
5 李靜;多移動機(jī)器人路徑規(guī)劃避碰和協(xié)調(diào)研究[D];上海交通大學(xué);2007年
,本文編號:2138690
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2138690.html