光纖光柵壓力傳感器與智能檢測系統(tǒng)研究
[Abstract]:With the increasing application of fiber optic sensors, the demand for high sensitivity fiber Bragg grating pressure sensors is becoming more and more obvious. However, the production capacity of the manufacturers that produce the sensors, as well as their sensor design capabilities, as well as the production capacity for the process and the corresponding quality, are uneven. How to select the optical fiber sensor which meets the requirements of inspection and calibration rules is an urgent problem to be solved. Pressure sensor detection has become an important indicator. With the quickening pace of modernization, the industrial production is becoming more and more compact, the accuracy of measuring the physical parameters of the primary equipment, such as high-voltage transformers, high-voltage switchgear, buildings in substations, power towers, etc., It will have a direct effect on fault diagnosis of monitoring system. The pressure sensor is a new generation of optical fiber sensor, which is mainly developed by using the sensitivity of optical fiber wavelength to temperature and strain. Moreover, the sensor has the characteristics of multi-point distribution detection of energy, resistance to electromagnetic interference, long-term stability, high precision and so on. Therefore, it has been widely used in power industry, intelligent material performance testing, concrete structure monitoring and other fields. Compared with the previous fiber optic sensors, it is not difficult to find that the wavelength modulation type fiber grating sensors are obviously unique than the traditional type of fiber optic sensors. In this paper, the intelligent verification system of pressure sensor and its application in pressure test experiment are deeply studied. A new type of intelligent verification system for pressure sensor is developed, and its function is intelligentized. Hardware and software configuration of the overall design. The sensor has accurate repeatability, sensitivity and linearity. At the same time, the Bragg wavelength drift of the grating is detected by fiber Bragg grating demodulator. The experimental results are in good agreement with the theoretical values. The main contents of this paper are as follows: (1) the basic structure and related theory of fiber Bragg grating are introduced in this paper. Then the strain, stress and temperature sensing characteristics of fiber Bragg grating are analyzed comprehensively, and the strain is also analyzed. In the practical application of temperature crossover, the solution to the sensitive problem, the structure of fiber Bragg grating pressure sensor and the mathematical model of the pressure sensor are designed. It provides the theoretical basis for the experiment of optical fiber intelligent pressure verification. (2) the test environment of an intelligent calibration system for fiber Bragg grating pressure sensor, the hardware design of pressure sensor, the design of software architecture, the design of database, The development of intelligent pressure detection system, the calculation, storage and printing of the pressure sensor data. (3) based on the experimental data of fiber Bragg grating pressure sensor, the sensitivity, linearity can be calculated through the relevant formulas. The repeatability error and static index are analyzed, and the error analysis is carried out in the experiment.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻】
相關(guān)期刊論文 前10條
1 金清平;鄭祖嘉;雷學(xué)文;;光纖光柵傳感器在FRP土釘現(xiàn)場拉拔試驗中的應(yīng)用[J];施工技術(shù);2014年19期
2 楊洪磊;梁仕斌;李川;昌明;李英娜;;光纖光柵傳感技術(shù)及其在電力系統(tǒng)中的應(yīng)用[J];中國電力教育;2013年29期
3 劉瀟;張強;宋維民;;基于光纖傳感的智能建筑配電系統(tǒng)安全監(jiān)測系統(tǒng)的研究[J];智能建筑電氣技術(shù);2013年05期
4 段朝磊;司興登;陳焰;李英娜;趙振剛;謝濤;劉愛蓮;陳武奮;胡萬層;楊松松;李川;;熱導(dǎo)式光纖Bragg光柵二氧化碳分析儀的研究[J];傳感技術(shù)學(xué)報;2013年09期
5 蔡安;印新達;常曉東;江山;;具有溫度補償?shù)哪て凸饫w光柵溫度壓力傳感器[J];傳感器與微系統(tǒng);2013年04期
6 李曉龍;李川;王達達;張少泉;李英娜;;FBG傳感技術(shù)在云南山地高壓變電站及輸變電設(shè)備在線監(jiān)測中的應(yīng)用研究[J];高壓電器;2013年03期
7 馮潔;;光纖光柵測溫技術(shù)在變電站開關(guān)柜的應(yīng)用研究[J];中國高新技術(shù)企業(yè);2012年21期
8 徐鵬;孫玲;;壓力傳感器溫度漂移補償?shù)膽?yīng)用分析[J];中國水運(下半月);2012年01期
9 徐國軍;;新型電氣信號檢測元件——智能傳感器[J];自動化應(yīng)用;2011年07期
10 王瓊;嚴(yán)南;;基于等強度懸臂梁的光纖傳感器設(shè)計研究[J];微計算機信息;2010年04期
相關(guān)碩士學(xué)位論文 前9條
1 何晶;金屬化封裝的光纖光柵壓力傳感器研究[D];哈爾濱理工大學(xué);2012年
2 黃俊;光纖光柵壓力傳感器的研制與應(yīng)用[D];武漢理工大學(xué);2013年
3 李軍;一種DBR型鉺鐿共摻光纖激光器的研究[D];吉林大學(xué);2004年
4 李仲超;光纖Bragg光柵振動加速度測量系統(tǒng)的設(shè)計與研究[D];燕山大學(xué);2006年
5 王艷;光纖Bragg光柵壓力傳感器的研究[D];大連理工大學(xué);2007年
6 吳海峰;井下高溫高壓光纖光柵傳感器的理論與現(xiàn)場測試研究[D];西安石油大學(xué);2009年
7 沈曉春;基于MEMS的壓力傳感器研制[D];上海交通大學(xué);2014年
8 許俊飛;反射Bragg波長的信號解調(diào)與遠程監(jiān)測研究[D];昆明理工大學(xué);2015年
9 肖范;光纖光柵智能應(yīng)變傳感器系統(tǒng)的研制與不確定度分析[D];昆明理工大學(xué);2016年
,本文編號:2135242
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2135242.html