復合材料板變形分布式光纖感知與控制方法研究
[Abstract]:Fiber Bragg grating (FBG) sensors have many unique advantages such as small size, anti-electromagnetic interference, high sensitivity, easy to build distributed sensor networks and suitable for integration with composite structures, and are widely used in the field of aeronautics and astronautics. Modern aircraft is developing towards multi-function, high maneuverability and high reliability. Intelligent aircraft with self-diagnosis, self-repair and adaptive function has been paid more attention to. Therefore, this paper presents a distributed fiber sensing and control method for bending deformation of composite laminates, which is similar to the wing flexible trailing edge based on neural network pid algorithm. The main work includes the following aspects: first of all, The fabrication methods of composite laminates for embedded fiber Bragg grating sensors, such as curing process of oven and hot pressing tank, laying and extraction of fiber optic sensors, etc. In order to investigate the effect of curing process on the sensing performance of fiber Bragg grating sensors, the variation characteristics of reflectance spectrum and center wavelength offset of fiber Bragg grating sensors in different curing stages of composite laminates were studied. It provides a useful reference for the optimization of the subsequent curing process and the performance evaluation of the sensor. Secondly, based on fiber Bragg grating sensor, the bending deformation monitoring system of single side clamped epoxy resin plate and carbon fiber composite laminated plate is constructed. With the help of the experimental calibration method, the mapping relationship between the bending deformation of the plate structure and the central wavelength offset of the fiber grating sensor array under typical loading conditions is obtained, which provides the basis for the rapid identification of the plate structure deformation. Thirdly, according to the requirements of wing structure deformation control, the pid algorithm based on Hebb single neuron BP neural network and RBF neural network control is presented based on the traditional pid algorithm. Numerical simulation shows that the neural network pid control algorithm can improve the performance of deformation control such as overshoot and adjusting time. Finally, the distributed optical fiber monitoring and control system of composite laminates deformation based on BP neural network pid algorithm is constructed, and the software of sensing and controlling the bending deformation of composite laminates based on LabVIEW is developed. The control of bending deformation state of plate structure is realized.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TB33;TP212
【參考文獻】
相關(guān)期刊論文 前10條
1 袁慎芳;閆美佳;張巾巾;邱雷;;一種適用于梁式機翼的變形重構(gòu)方法[J];南京航空航天大學學報;2014年06期
2 石慶華;王清明;胡孝才;;埋入光纖對復合材料基本力學性能的影響[J];航空制造技術(shù);2014年09期
3 李揚;朱倩;徐志偉;;SMA驅(qū)動變體機翼后緣精確控制研究[J];機械科學與技術(shù);2013年07期
4 王通;吳振;;模擬X型號飛機復合材料機翼有限元分析[J];沈陽航空航天大學學報;2011年05期
5 李威;郭權(quán)鋒;;碳纖維復合材料在航天領(lǐng)域的應(yīng)用[J];中國光學;2011年03期
6 賈子光;任亮;李宏男;任明法;黃其忠;;應(yīng)用光纖光柵傳感器監(jiān)測復合材料固化過程[J];中國激光;2010年05期
7 裘進浩;邊義祥;季宏麗;朱孔軍;;智能材料結(jié)構(gòu)在航空領(lǐng)域中的應(yīng)用[J];航空制造技術(shù);2009年03期
8 朱曉錦;陸美玉;樊紅朝;張合生;錢晉武;;光纖光柵機敏結(jié)構(gòu)振動形態(tài)感知與重構(gòu)試驗研究[J];儀器儀表學報;2009年01期
9 張樂;王旭;劉文法;;考慮機翼靜氣動彈性的型架結(jié)構(gòu)nastran有限元仿真[J];微計算機信息;2008年34期
10 王志遠;閆建國;孫倩;;無人機微型舵機伺服控制器及其測試系統(tǒng)的設(shè)計[J];航空計算技術(shù);2008年05期
相關(guān)博士學位論文 前3條
1 孫九霄;基于布拉格光柵傳感的復合材料固化及沖擊損傷監(jiān)測研究[D];武漢理工大學;2011年
2 趙丹平;風力發(fā)電機組葉片模型氣動載荷研究[D];內(nèi)蒙古農(nóng)業(yè)大學;2009年
3 樊紅朝;基于光纖光柵的動態(tài)面形檢測和可視化關(guān)鍵技術(shù)研究[D];上海大學;2008年
相關(guān)碩士學位論文 前10條
1 武雪;基于FBG的碳纖維復合材料成型及低能量沖擊性能研究[D];東華大學;2014年
2 田東奎;柔性后緣非線性力學建模與驅(qū)動機制[D];哈爾濱工業(yè)大學;2013年
3 王剛;鮑店煤礦鉆孔植入光柵監(jiān)測地層沉降系統(tǒng)波長分析[D];西安科技大學;2012年
4 曹帥帥;光纖光柵溫度傳感器信號解調(diào)及其自動標定系統(tǒng)設(shè)計[D];山東大學;2012年
5 鄒君;基于智能蒙皮的變體機翼后緣變形監(jiān)測與反演[D];南京航空航天大學;2012年
6 袁晗;分布式多自由度主動變形機翼的設(shè)計與研究[D];哈爾濱工業(yè)大學;2011年
7 宋冬萍;智能溫度測控系統(tǒng)的研究與設(shè)計[D];蘇州大學;2010年
8 周建華;光纖光柵傳感器應(yīng)變傳遞特性研究[D];武漢理工大學;2010年
9 周廣東;光纖光柵傳感器應(yīng)變傳遞理論研究[D];大連理工大學;2007年
10 劉益民;基于改進BP神經(jīng)網(wǎng)絡(luò)的PID控制方法的研究[D];中國科學院研究生院(西安光學精密機械研究所);2007年
,本文編號:2133363
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2133363.html