天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

拼接主鏡驅(qū)動(dòng)控制技術(shù)研究

發(fā)布時(shí)間:2018-07-15 11:50
【摘要】:對(duì)分塊拼接主鏡的主動(dòng)控制可以有效的降低拼接誤差、提高成像質(zhì)量。由于主鏡質(zhì)量較重,諧振頻率較低,低拼接主鏡主動(dòng)控制的帶寬一般在1 Hz以下,但仍能滿足對(duì)溫度、重力等低頻擾動(dòng)的校正需求。KECK、TMT和E-ELT等拼接主鏡結(jié)構(gòu)均采用邊緣傳感器測(cè)量相鄰子鏡的拼接誤差,利用每塊子鏡的三個(gè)驅(qū)動(dòng)器實(shí)現(xiàn)誤差校正。但是邊緣傳感器的檢測(cè)數(shù)據(jù)會(huì)隨著時(shí)間和環(huán)境變化等產(chǎn)生漂移,導(dǎo)致不可接受的拼接誤差。因此,KECK望遠(yuǎn)鏡會(huì)根據(jù)觀測(cè)任務(wù)需求,先對(duì)不同天頂位置主鏡拼接控制量進(jìn)行標(biāo)定,實(shí)際工作時(shí)根據(jù)查表法進(jìn)行開環(huán)控制。同時(shí),為減小邊緣傳感器數(shù)據(jù)漂移的影響,每過(guò)一段時(shí)間對(duì)邊緣傳感器進(jìn)行繁瑣的標(biāo)定。本文嘗試將傳感器標(biāo)定值作為反饋,避免使用昂貴且會(huì)發(fā)生漂移的邊緣傳感器,以實(shí)現(xiàn)對(duì)主鏡拼接誤差的實(shí)時(shí)閉環(huán)校正。為實(shí)現(xiàn)對(duì)主鏡靜態(tài)拼接誤差的高效校正和動(dòng)態(tài)誤差的實(shí)時(shí)校正,要求控制系統(tǒng)有足夠的靜態(tài)增益和一定的控制帶寬。因此本文首先研究了被控對(duì)象影響函數(shù)模型,并根據(jù)這一模型進(jìn)行控制器的設(shè)計(jì)和實(shí)驗(yàn)研究。被控對(duì)象模型包含影響函數(shù)和延時(shí)。影響函數(shù)表征了驅(qū)動(dòng)器位移與分塊主鏡表面給定位置位移之間的關(guān)系,是一個(gè)與控制帶寬無(wú)關(guān)的關(guān)系矩陣,在KECK中稱之為面型控制方程,為了方便區(qū)分本文稱之為影響函數(shù)。被控對(duì)象模型除影響函數(shù)之外還包含一個(gè)延時(shí)環(huán)節(jié),延時(shí)是指驅(qū)動(dòng)器發(fā)出控制命令到傳感器發(fā)生相應(yīng)改變的時(shí)間。帶來(lái)延時(shí)的因素有很多,比如計(jì)算用時(shí)、傳感器、采樣器、DA轉(zhuǎn)換和AD轉(zhuǎn)換,在本文中實(shí)測(cè)結(jié)果是1個(gè)采樣周期?刂破靼刂凭仃嚭蛦巫兞靠刂破。拼接主鏡主動(dòng)控制系統(tǒng)是一個(gè)多變量控制系統(tǒng),且變量之間存在耦合作用。為了實(shí)現(xiàn)拼接主鏡主動(dòng)控制,首先利用控制矩陣消除變量之間的相互耦合,然后對(duì)解耦之后的系統(tǒng)按照經(jīng)典控制理論進(jìn)行控制器設(shè)計(jì)。影響函數(shù)與控制矩陣互為逆矩陣,控制矩陣在多變量控制器設(shè)計(jì)中起著至關(guān)重要的作用。影響函數(shù)一般不存在逆矩陣,但通過(guò)最小二乘法和奇異值分解法可獲得影響函數(shù)廣義逆。多變量控制器主要基于最小二乘逆解耦控制和SVD分解控制的進(jìn)行設(shè)計(jì),根據(jù)Simulink仿真結(jié)果,兩者都可以實(shí)現(xiàn)被控對(duì)象的穩(wěn)定控制,且對(duì)影響函數(shù)元素變化不敏感。解耦之后得到的單變量系統(tǒng)是延時(shí)環(huán)節(jié),延時(shí)環(huán)節(jié)可采用積分器進(jìn)行控制,積分控制器設(shè)計(jì)必須兼顧相位裕度、誤差帶寬、靈敏度函數(shù)增益和階躍響應(yīng)調(diào)節(jié)時(shí)間。將設(shè)計(jì)完成的解耦控制器應(yīng)用在主動(dòng)共焦共相實(shí)驗(yàn)系統(tǒng)中,順利實(shí)現(xiàn)了拼接主鏡主動(dòng)共焦。對(duì)系統(tǒng)的分析發(fā)現(xiàn),系統(tǒng)傾斜誤差校正帶寬達(dá)到0.34 Hz,實(shí)現(xiàn)了校正低頻擾動(dòng)的目的;階躍響應(yīng)調(diào)節(jié)時(shí)間2.6 s,超調(diào)量約為7%,實(shí)現(xiàn)了靜態(tài)拼接誤差的快速校正。需要指出的是由于檢測(cè)等方面的原因,還未實(shí)現(xiàn)主動(dòng)共相調(diào)整。
[Abstract]:The active control of segmented primary mirror can effectively reduce the splicing error and improve the imaging quality. Because of the heavy quality of primary mirror and low resonant frequency, the bandwidth of active control of low splicing primary mirror is generally less than 1 Hz, but it can still satisfy the temperature of the primary mirror. Correction requirements for gravity isofrequency disturbances. The spliced primary mirror structures such as KECKT TMT and E-ELT all use edge sensors to measure the splicing errors of adjacent sub-mirrors and use the three drivers of each sub-mirror to achieve error correction. However, the detection data of edge sensor will drift with time and environment, resulting in unacceptable splicing error. Therefore, according to the requirements of the observation mission, the KECK telescope will first calibrate the control quantities of the primary mirror splicing at different zenith positions, and carry out open-loop control according to the look-up table method in practice. At the same time, in order to reduce the influence of edge sensor data drift, the edge sensor is calibrated every time. This paper attempts to use the calibration value of the sensor as feedback to avoid using the expensive edge sensor which will drift in order to realize the real-time closed-loop correction of the primary mirror splicing error. In order to correct the static splicing error of primary mirror efficiently and to correct the dynamic error in real time, it is required that the control system has enough static gain and certain control bandwidth. In this paper, the influence function model of the controlled object is studied, and the controller design and experimental research are carried out according to the model. The controlled object model includes influence function and delay. The influence function represents the relationship between the displacement of the driver and the displacement of the given position on the surface of the block primary mirror, which is a matrix independent of the control bandwidth. It is called the surface control equation in KECK, and in order to distinguish the influence function in this paper. In addition to the influence function, the controlled object model also includes a delay link, which refers to the time when the driver sends out the control command and the sensor changes accordingly. There are many factors that bring delay, such as computing time, sensor, sampler DA conversion and AD conversion. In this paper, the measured results are a sampling period. The controller consists of a control matrix and a single variable controller. The active control system of splicing primary mirror is a multivariable control system, and there is coupling between variables. In order to realize the active control of spliced primary mirror, the control matrix is firstly used to eliminate the mutual coupling between variables, and then the controller is designed according to the classical control theory for the decoupled system. The control matrix plays an important role in the design of multivariable controller. Generally speaking, there is no inverse matrix in the influence function, but the generalized inverse of the influence function can be obtained by the least square method and the singular value decomposition method. The multivariable controller is mainly based on the least-squares inverse decoupling control and SVD decomposition control. According to the Simulink simulation results, both of them can realize the stable control of the controlled object, and are not sensitive to the change of the influencing function elements. After decoupling, the single variable system is a delay link, which can be controlled by an integrator. The design of the integral controller must take into account the phase margin, error bandwidth, sensitivity function gain and step response adjustment time. The designed decoupling controller is applied to the active confocal co-phase experimental system and the active confocal joint primary mirror is successfully realized. Through the analysis of the system, it is found that the correction bandwidth of the system tilting error reaches 0.34 Hz, the aim of correcting the low frequency disturbance is realized, and the step response adjusting time is 2.6 s, the overshoot is about 7, and the fast correction of static splicing error is realized. It should be pointed out that due to detection and other reasons, active phase adjustment has not been achieved.
【學(xué)位授予單位】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院光電技術(shù)研究所)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 約翰·馬特森;木子;;詹姆斯·韋伯太空望遠(yuǎn)鏡的6個(gè)有趣事實(shí)[J];航天員;2011年01期

2 王姍姍;朱秋東;曹根瑞;;空間拼接主鏡望遠(yuǎn)鏡共相位檢測(cè)方法[J];光學(xué)學(xué)報(bào);2009年09期

3 林旭東;陳濤;王建立;王富國(guó);;拼接鏡的主動(dòng)光學(xué)面形控制[J];光學(xué)精密工程;2009年01期

4 ;大天區(qū)面積多目標(biāo)光纖光譜天文望遠(yuǎn)鏡[J];物理;2008年12期

5 戴永彬;楊衛(wèi)東;王少福;張明;戴永彬;王冬梅;;多變量預(yù)測(cè)解耦控制綜述[J];電氣自動(dòng)化;2008年06期

6 桑保華;薛曉中;;多變量解耦控制方法[J];火力與指揮控制;2007年11期

7 郝鐘雄;;天文望遠(yuǎn)鏡現(xiàn)狀及發(fā)展趨勢(shì)[J];現(xiàn)代科學(xué)儀器;2007年05期

8 毛劍波;易茂祥;;PZT壓電陶瓷極化工藝研究[J];壓電與聲光;2006年06期

9 閔娟,黃之初;多變量解耦控制方法[J];控制工程;2005年S2期

10 蒙文舜,楊運(yùn)經(jīng),劉云鵬;電容傳感器的原理及應(yīng)用[J];現(xiàn)代電子技術(shù);2003年07期

相關(guān)碩士學(xué)位論文 前1條

1 王金;反射鏡共相位拼接檢測(cè)與驅(qū)動(dòng)控制技術(shù)研究[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2014年

,

本文編號(hào):2123974

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2123974.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b6ddb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com