基于改進遺傳算法的單目相機標(biāo)定和目標(biāo)定位的研究
[Abstract]:Since the emergence of machine vision in the middle of 1960s, it has made great progress, and its theory and application have also made a lot of achievements. Machine vision has been widely used in scientific research, social life, industrial production and other fields. In robot vision servo, photogrammetry and other visual applications, camera calibration is a prerequisite for extracting accurate 3D information from an image. The accuracy of the calibration results and the stability of the algorithm directly affect the accuracy of the camera work. Based on the research at home and abroad, this thesis makes a systematic theoretical research and technical analysis on camera calibration technology, including the improvement of image feature extraction algorithm in camera calibration process, the optimization of algorithm for solving camera internal parameters, and so on. Experiments are designed to verify the validity and accuracy of the proposed algorithm, and on this basis, the target location technology of single camera is explored and studied. The main work and innovation of this master thesis are: 1. Based on the analysis of common feature extraction methods in camera calibration, an improved feature extraction algorithm for array circular template is proposed. The algorithm uses the particularity of the circular array template, through the three-step filtering method, quickly finds the template projection on the image plane. Finally, the improved Hu method and sub-pixel method are used to accurately locate the center of the ellipse. A camera calibration algorithm based on genetic algorithm is proposed. According to Zhang Zhengyou's camera calibration method, the internal parameters of the camera are first calculated as the initial values of the internal parameters, and then the improved genetic algorithm is used to optimize and iterate the initial internal parameters to obtain more accurate internal parameters of the camera. This method is applied to two different camera calibration templates: chessboard lattice and circular array template respectively. The accuracy of calibration of camera parameters is improved by .3. compared with the calibration method of Zhang Zhengyou camera. In this paper, a method of target location based on genetic algorithm for monocular vision is proposed. In this method, two images are used to locate the image. By setting the artificial mark bit in the image, the mismatch caused by the use of RANSAC image matching method is effectively avoided, and the genetic algorithm is used to optimize the solution of the basic matrix. A more accurate target location of monocular vision is realized.
【學(xué)位授予單位】:揚州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP18
【參考文獻】
相關(guān)期刊論文 前10條
1 張鐵;馬瓊雄;;基于局部背景特征點的目標(biāo)定位和跟蹤[J];中南大學(xué)學(xué)報(自然科學(xué)版);2016年09期
2 潘邈;曹建蜀;;多攝像機下的目標(biāo)圖像跟蹤關(guān)聯(lián)算法研究[J];計算機仿真;2016年01期
3 陳小艷;王強;李柏林;;改進的Hough變換檢測圓方法[J];計算機系統(tǒng)應(yīng)用;2015年08期
4 郭延杰;白福忠;張鐵英;武建新;徐剛;;基于Radon變換與灰度重心法的環(huán)形目標(biāo)直徑測量方法[J];激光與光電子學(xué)進展;2015年08期
5 陳天飛;趙吉賓;王銀靈;吳翔;;基于射影變換圓陣靶標(biāo)中心像點的計算[J];儀器儀表學(xué)報;2015年04期
6 曹之樂;嚴(yán)中紅;王洪;;雙目立體視覺匹配技術(shù)綜述[J];重慶理工大學(xué)學(xué)報(自然科學(xué));2015年02期
7 李鵬;蔡玉雷;陳金立;;采用橢圓算法和Canny算子的超聲TOF估計方法[J];儀器儀表學(xué)報;2014年10期
8 吳春富;唐慶順;謝煌生;周風(fēng)余;;一種新型的本質(zhì)矩陣解析分解算法[J];山東大學(xué)學(xué)報(理學(xué)版);2014年03期
9 劉仁峰;龔俊斌;田金文;;基于二次曲線的線陣相機標(biāo)定技術(shù)[J];計算機工程;2013年01期
10 范怡;傅繼武;;基于中點提取的橢圓檢測算法[J];計算機應(yīng)用;2011年10期
相關(guān)博士學(xué)位論文 前3條
1 姚楠;基于單目視覺的運動目標(biāo)跟蹤定位技術(shù)研究[D];上海交通大學(xué);2014年
2 馮春;基于單目視覺的目標(biāo)識別與定位研究[D];南京航空航天大學(xué);2013年
3 傅丹;基于直線特征的空間目標(biāo)三維結(jié)構(gòu)重建和位姿測量方法研究[D];國防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前5條
1 尹長志;基于雙目視覺輪式機器人的目標(biāo)檢測與定位跟蹤研究[D];北京交通大學(xué);2012年
2 李迎wF;雙目立體視覺景象匹配與場景描述技術(shù)研究[D];長春工業(yè)大學(xué);2012年
3 范學(xué)棟;基于基本矩陣的匹配算法研究[D];中南大學(xué);2011年
4 佘彥杰;基于多幅圖像序列的三維重建[D];吉林大學(xué);2006年
5 杜娜;多目視覺坐標(biāo)測量的關(guān)鍵技術(shù)研究[D];青島大學(xué);2005年
,本文編號:2120465
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2120465.html