使用雙向LSTM的深度神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)蛋白質(zhì)殘基相互作用
發(fā)布時(shí)間:2018-07-10 14:21
本文選題:蛋白質(zhì) + 相互作用 ; 參考:《小型微型計(jì)算機(jī)系統(tǒng)》2017年03期
【摘要】:殘基對(duì)的相互作用描述了蛋白質(zhì)三維結(jié)構(gòu)中一對(duì)殘基的空間距離關(guān)系.一對(duì)殘基是否相互作用不僅取決于這對(duì)殘基的本身屬性,還受到這對(duì)殘基所在蛋白質(zhì)的所有其它殘基的影響.傳統(tǒng)的殘基相互作用預(yù)測(cè)方法往往選取要預(yù)測(cè)殘基對(duì)本身以及它們各自鄰居的殘基屬性作為特征,這些方法忽略了影響殘基對(duì)相互作用的全局因素.本文使用雙向LSTM(Long Short-term M emory)抽取蛋白質(zhì)序列上每個(gè)殘基的屬性,通過(guò)這種方式得到的每個(gè)殘基屬性不僅包含了局部屬性還包含了全局屬性.實(shí)驗(yàn)結(jié)果表明我們的模型在多個(gè)基準(zhǔn)測(cè)試集上的Acc(Accuracy)超過(guò)其它方法 10%以上.
[Abstract]:The interaction of residue pairs describes the spatial distance relationship of a pair of residues in a protein three-dimensional structure. Whether a pair of residues interact or not depends not only on the properties of the pair of residues, but also on all the other residues of the protein in which the residues are located. The traditional prediction methods of residue interaction often choose the residual properties of the residual pair and their neighbors as the characteristics. These methods ignore the global factors that affect the residual pair interaction. In this paper, bidirectional LSTM (long Short-term M emory) is used to extract the attributes of each residue on a protein sequence. Each residue attribute obtained in this way contains not only local attributes but also global attributes. The experimental results show that our model has more than 10% Acc (Accuracy) on multiple benchmark sets.
【作者單位】: 蘇州大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;蘇州大學(xué)江蘇省計(jì)算機(jī)信息處理技術(shù)重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(61170125)資助
【分類(lèi)號(hào)】:Q51;TP183
,
本文編號(hào):2113648
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2113648.html
最近更新
教材專(zhuān)著