天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

使用雙向LSTM的深度神經網絡預測蛋白質殘基相互作用

發(fā)布時間:2018-07-10 14:21

  本文選題:蛋白質 + 相互作用 ; 參考:《小型微型計算機系統(tǒng)》2017年03期


【摘要】:殘基對的相互作用描述了蛋白質三維結構中一對殘基的空間距離關系.一對殘基是否相互作用不僅取決于這對殘基的本身屬性,還受到這對殘基所在蛋白質的所有其它殘基的影響.傳統(tǒng)的殘基相互作用預測方法往往選取要預測殘基對本身以及它們各自鄰居的殘基屬性作為特征,這些方法忽略了影響殘基對相互作用的全局因素.本文使用雙向LSTM(Long Short-term M emory)抽取蛋白質序列上每個殘基的屬性,通過這種方式得到的每個殘基屬性不僅包含了局部屬性還包含了全局屬性.實驗結果表明我們的模型在多個基準測試集上的Acc(Accuracy)超過其它方法 10%以上.
[Abstract]:The interaction of residue pairs describes the spatial distance relationship of a pair of residues in a protein three-dimensional structure. Whether a pair of residues interact or not depends not only on the properties of the pair of residues, but also on all the other residues of the protein in which the residues are located. The traditional prediction methods of residue interaction often choose the residual properties of the residual pair and their neighbors as the characteristics. These methods ignore the global factors that affect the residual pair interaction. In this paper, bidirectional LSTM (long Short-term M emory) is used to extract the attributes of each residue on a protein sequence. Each residue attribute obtained in this way contains not only local attributes but also global attributes. The experimental results show that our model has more than 10% Acc (Accuracy) on multiple benchmark sets.
【作者單位】: 蘇州大學計算機科學與技術學院;蘇州大學江蘇省計算機信息處理技術重點實驗室;
【基金】:國家自然科學基金項目(61170125)資助
【分類號】:Q51;TP183


本文編號:2113648

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2113648.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶be5c4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com