直流鍋爐主蒸汽溫度控制系統(tǒng)研究
本文選題:鍋爐蒸汽系統(tǒng) + 串級(jí)PID控制; 參考:《西安建筑科技大學(xué)》2017年碩士論文
【摘要】:火力發(fā)電是現(xiàn)代社會(huì)電力發(fā)展的主力軍,隨著現(xiàn)代科學(xué)技術(shù)的不斷進(jìn)步,電廠發(fā)電機(jī)組的容量增大,參數(shù)提高,系統(tǒng)變得更加復(fù)雜。在建設(shè)和諧社會(huì)、發(fā)展循環(huán)經(jīng)濟(jì)的大背景下,對(duì)于提高火電廠自動(dòng)化水平以及機(jī)組的經(jīng)濟(jì)運(yùn)行提出了新的要求。而鍋爐蒸汽控制系統(tǒng)作為火電廠生產(chǎn)過程中重要的系統(tǒng)之一,蒸汽參數(shù)直接影響著機(jī)組的安全生產(chǎn)以及經(jīng)濟(jì)運(yùn)行。其中主蒸汽溫度是主要的控制參數(shù),提高其自動(dòng)化控制水平、優(yōu)化其控制策略就顯得尤為迫切。本文以主蒸汽溫度為研究對(duì)象,針對(duì)其延遲大、慣性大、時(shí)變和非線性的性質(zhì),對(duì)主蒸汽溫度控制系統(tǒng)進(jìn)行了研究與實(shí)現(xiàn),并完成了仿真實(shí)驗(yàn)研究,主要研究工作如下:(1)介紹了主蒸汽溫度對(duì)系統(tǒng)的影響,對(duì)主蒸汽溫度在外界擾動(dòng)因素影響下的動(dòng)態(tài)特性以及靜態(tài)特性進(jìn)行了深入分析,給出了主蒸汽溫度的數(shù)學(xué)模型,并詳細(xì)闡述了基于噴水減溫控制手段的串級(jí)主蒸汽溫度控制策略。(2)在對(duì)模糊控制以及PID算法進(jìn)行研究的基礎(chǔ)上,根據(jù)模糊控制系統(tǒng)不依賴于被控對(duì)象的精確數(shù)學(xué)模型的性質(zhì),將傳統(tǒng)串級(jí)PID控制系統(tǒng)中的PID主調(diào)節(jié)器以模糊PID控制器代替,設(shè)計(jì)模糊PID主蒸汽溫度控制系統(tǒng),對(duì)系統(tǒng)的工作原理及實(shí)現(xiàn)過程進(jìn)行了研究。(3)結(jié)合神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng),將模糊邏輯技術(shù)置入神經(jīng)網(wǎng)絡(luò),利用神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)來實(shí)現(xiàn)模糊邏輯推理,使系統(tǒng)同時(shí)體現(xiàn)專家知識(shí)的語言規(guī)則以及神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)能力,設(shè)計(jì)基于模糊神經(jīng)網(wǎng)絡(luò)得主蒸汽溫度控制系統(tǒng),對(duì)系統(tǒng)的工作原理及實(shí)現(xiàn)過程進(jìn)行了研究。(4)仿真實(shí)驗(yàn)研究,采用MATLAB對(duì)模糊PID算法及模糊神經(jīng)網(wǎng)絡(luò)算法進(jìn)行仿真,結(jié)果表明以模糊PID控制代替PID控制,可以提高控制系統(tǒng)對(duì)主蒸汽溫度的調(diào)節(jié)品質(zhì);而基于模糊神經(jīng)網(wǎng)絡(luò)的主蒸汽溫度控制系統(tǒng)的控制效果則更加高效。
[Abstract]:Thermal power generation is the main force of power development in modern society. With the development of modern science and technology, the capacity and parameters of generating units in power plants increase and the system becomes more complex. Under the background of constructing harmonious society and developing circular economy, new requirements are put forward for improving automation level of thermal power plant and economic operation of unit. Boiler steam control system is one of the most important systems in the production process of thermal power plant. Steam parameters directly affect the safe production and economic operation of the unit. The main steam temperature is the main control parameter, so it is urgent to improve the automatic control level and optimize the control strategy. In this paper, the main steam temperature control system is studied and implemented in view of its large delay, large inertia, time-varying and nonlinear, and the simulation experiment is completed. The main research works are as follows: (1) the influence of the main steam temperature on the system is introduced. The dynamic and static characteristics of the main steam temperature under the influence of external disturbance factors are deeply analyzed, and the mathematical model of the main steam temperature is given. The temperature control strategy of cascade main steam based on the method of reducing temperature by spraying water is described in detail. (2) on the basis of the research of fuzzy control and pid algorithm, according to the properties of the fuzzy control system which does not depend on the precise mathematical model of the controlled object, The main pid controller in the traditional cascade pid control system is replaced by the fuzzy pid controller, and the fuzzy pid main steam temperature control system is designed. The working principle and realization process of the system are studied. (3) combining the neural network with the fuzzy system, The fuzzy logic technology is put into the neural network, and the neural network structure is used to realize the fuzzy logic reasoning, which makes the system embody the language rules of expert knowledge and the self-learning ability of the neural network at the same time. A steam temperature control system based on fuzzy neural network is designed. The working principle and realization process of the system are studied. (4) the simulation experiment is carried out, and the fuzzy pid algorithm and fuzzy neural network algorithm are simulated by MATLAB. The results show that the quality of the control system can be improved by replacing pid control with fuzzy pid control, and the control effect of the main steam temperature control system based on fuzzy neural network is more efficient.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273;TM621
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙旭;;計(jì)算機(jī)在鍋爐溫度測(cè)量中的應(yīng)用[J];網(wǎng)絡(luò)空間安全;2016年05期
2 吳勇;張超;董學(xué)育;;模糊自整定PID在過熱汽溫控制中的應(yīng)用研究[J];自動(dòng)化與儀器儀表;2016年04期
3 趙志丹;郝德鋒;王海濤;高玉峰;;二次再熱超超臨界機(jī)組再熱蒸汽溫度控制策略[J];熱力發(fā)電;2015年12期
4 李煒;;基于火力發(fā)電廠熱能動(dòng)力裝置的檢測(cè)與維護(hù)分析[J];科技創(chuàng)新與應(yīng)用;2015年31期
5 劉小亮;張雪敏;秦博宇;孫銘澤;;蒸汽參數(shù)變化對(duì)汽輪機(jī)系統(tǒng)穩(wěn)定性影響的機(jī)理分析[J];電力科學(xué)與工程;2015年04期
6 王海燕;燕巍;;一種自整定PID參數(shù)的模糊控制系統(tǒng)的設(shè)計(jì)與仿真[J];自動(dòng)化技術(shù)與應(yīng)用;2015年04期
7 胡嘉偉;;DCS集散型控制系統(tǒng)發(fā)展綜述[J];中國(guó)高新技術(shù)企業(yè);2015年10期
8 武彬;張欒英;;模糊自整定PID控制在主汽溫控制中的應(yīng)用[J];計(jì)算機(jī)仿真;2015年02期
9 楊濮亦;李海永;;鍋爐過熱蒸汽溫度控制策略優(yōu)化[J];熱力發(fā)電;2014年10期
10 李行;李益;;電廠熱工自動(dòng)化技術(shù)應(yīng)用現(xiàn)狀及研究展望[J];產(chǎn)業(yè)與科技論壇;2014年06期
相關(guān)碩士學(xué)位論文 前10條
1 劉慶余;基于粒子群的模糊控制在過熱蒸汽溫度系統(tǒng)中的研究[D];哈爾濱理工大學(xué);2015年
2 趙津津;300MW機(jī)組過熱蒸汽溫度控制系統(tǒng)建模與仿真[D];鄭州大學(xué);2013年
3 丁方;1000MW超超臨界機(jī)組過熱汽溫系統(tǒng)建模與優(yōu)化控制[D];華北電力大學(xué);2013年
4 石金健;基于參數(shù)自整定控制器的主汽溫控制系統(tǒng)研究[D];華北電力大學(xué);2013年
5 劉璐璐;基于模糊神經(jīng)網(wǎng)絡(luò)的電廠主蒸汽溫度復(fù)合控制策略研究[D];河南理工大學(xué);2012年
6 李江春;超臨界直流鍋爐主蒸汽溫度智能控制策略研究[D];東華大學(xué);2012年
7 謝靜;基于神經(jīng)模糊PID混合控制的恒壓供水系統(tǒng)[D];西安科技大學(xué);2011年
8 繆童;DCS在大型火力發(fā)電廠的應(yīng)用[D];山東大學(xué);2010年
9 安軍濤;基于模糊神經(jīng)網(wǎng)絡(luò)的智能PID控制器研究與設(shè)計(jì)[D];武漢理工大學(xué);2010年
10 劉瓊;基于C8051F040的鍋爐除氧器溫度控制系統(tǒng)研究與設(shè)計(jì)[D];西安科技大學(xué);2007年
,本文編號(hào):2096995
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2096995.html