基于典型路徑庫(kù)的移動(dòng)機(jī)器人智能路徑規(guī)劃算法的研究與實(shí)現(xiàn)
本文選題:路徑規(guī)劃 + 移動(dòng)機(jī)器人; 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:路徑規(guī)劃是移動(dòng)機(jī)器人完成任務(wù)過(guò)程中需要解決的主要問(wèn)題之一。所謂路徑規(guī)劃是根據(jù)所處環(huán)境和運(yùn)動(dòng)約束條件生成一條或幾條從起始位置到終止位置之間的最優(yōu)路徑。對(duì)于大規(guī)模路徑規(guī)劃問(wèn)題,需要快速生成多條符合要求的路徑,而傳統(tǒng)的全局路徑規(guī)劃算法執(zhí)行效率較低,不能夠滿足上述問(wèn)題的要求。通過(guò)分析,我們發(fā)現(xiàn)移動(dòng)機(jī)器人所處的不同場(chǎng)景間存在相似或者部分相似的情況,相似區(qū)域中移動(dòng)機(jī)器人的運(yùn)動(dòng)方式和運(yùn)動(dòng)軌跡大致相同。這使得利用已有場(chǎng)景信息和路徑信息,優(yōu)化生成新路徑成為可能。本文圍繞相似場(chǎng)景下的路徑規(guī)劃問(wèn)題展開研究,提出了一種基于典型路徑庫(kù)的移動(dòng)機(jī)器人智能路徑規(guī)劃算法。該算法基于已有的場(chǎng)景和路徑信息,分析路徑的特征屬性形成知識(shí),在給定的新場(chǎng)景中,利用路徑知識(shí)快速生成多條符合期望的路徑。算法由場(chǎng)景建模、場(chǎng)景相似性度量、相似路徑特征提取、路徑優(yōu)化生成、路徑評(píng)價(jià)等多個(gè)模塊組成。本文的主要工作包含以下幾個(gè)方面:(1)針對(duì)場(chǎng)景建模問(wèn)題,本文研究了相似場(chǎng)景的特征屬性,采用聚類算法根據(jù)場(chǎng)景內(nèi)站位的聚集程度進(jìn)行區(qū)域劃分,將場(chǎng)景劃分結(jié)果作為場(chǎng)景描述的主要依據(jù)。(2)針對(duì)場(chǎng)景相似性度量問(wèn)題,本文將場(chǎng)景抽象為多邊形區(qū)域,,利用多邊形頂點(diǎn)匹配算法的思想,計(jì)算場(chǎng)景間的相似度,并使用動(dòng)態(tài)規(guī)劃的方法求解出兩個(gè)場(chǎng)景間最大相似區(qū)域匹配序列。(3)針對(duì)典型路徑庫(kù)建立問(wèn)題,本文提出“三段式”路徑構(gòu)建模型。本文從相似區(qū)域中提取相似路徑,通過(guò)局部與全局坐標(biāo)映射關(guān)系,結(jié)合車式移動(dòng)機(jī)器人的運(yùn)動(dòng)學(xué)特性,確定需求場(chǎng)景中的關(guān)鍵坐標(biāo)點(diǎn),從而建立典型路徑庫(kù)。(4)針對(duì)最優(yōu)路徑選擇問(wèn)題,本文綜合考慮多種因素,提出路徑評(píng)價(jià)函數(shù)模型。通過(guò)實(shí)驗(yàn)驗(yàn)證,確定各個(gè)參數(shù)的權(quán)重比例,從而對(duì)典型路徑庫(kù)中的多條參考路徑進(jìn)行評(píng)價(jià)排序。本文根據(jù)所提出的算法,搭建了場(chǎng)景布局和路徑規(guī)劃實(shí)驗(yàn)平臺(tái)。通過(guò)大量仿真實(shí)驗(yàn),驗(yàn)證了該算法的可行性。實(shí)驗(yàn)結(jié)果表明本文提出的算法對(duì)于相似場(chǎng)景中大規(guī)模路徑規(guī)劃問(wèn)題,能夠顯著提高效率,解決實(shí)際問(wèn)題。
[Abstract]:Path planning is one of the main problems that need to be solved in the process of mobile robot task completion. The so-called path planning is to generate one or more optimal paths from the starting position to the terminating position according to the environment and motion constraints. For the large-scale path planning problem, it is necessary to quickly generate many paths that meet the requirements. However, the traditional global path planning algorithm is inefficient and can not meet the requirements of the above problems. Through analysis, we find that there are similar or partial similarities between different scenes of mobile robot, and the motion mode and trajectory of mobile robot in similar region are approximately the same. This makes it possible to optimize the generation of new paths using existing scenario information and path information. In this paper, an intelligent path planning algorithm for mobile robots based on typical path library is proposed. Based on the existing scene and path information, the algorithm analyzes the characteristic attributes of the path to form knowledge. In a given new scenario, the path knowledge is used to quickly generate multiple paths that meet the expectations. The algorithm consists of several modules, such as scene modeling, scene similarity measurement, similarity path feature extraction, path optimization generation, path evaluation and so on. The main work of this paper includes the following aspects: (1) aiming at the problem of scene modeling, this paper studies the characteristic attributes of similar scenes, and uses clustering algorithm to divide the regions according to the degree of aggregation of the stations in the scene. The result of scene partitioning is regarded as the main basis of scene description. (2) aiming at the problem of scene similarity measurement, this paper abstracts the scene into polygon region and calculates the similarity between scenes by using the idea of polygon vertex matching algorithm. Dynamic programming is used to solve the matching sequence of the two scenes. (3) aiming at the problem of establishing a typical path library, a "three-segment" path construction model is proposed in this paper. In this paper, the similarity path is extracted from the similar region, and the key coordinate points in the requirement scene are determined by mapping the local and global coordinates and combining the kinematics characteristics of the vehicular mobile robot. In order to establish a typical path library. (4) aiming at the problem of optimal path selection, this paper proposes a path evaluation function model considering a variety of factors. Through experimental verification, the weight ratio of each parameter is determined, and then the multiple reference paths in the typical path library are evaluated and sorted. According to the proposed algorithm, a scene layout and path planning experimental platform is built in this paper. The feasibility of the algorithm is verified by a large number of simulation experiments. Experimental results show that the proposed algorithm can significantly improve the efficiency and solve the practical problems for large-scale path planning problems in similar scenarios.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭江;肖宇峰;劉欣雨;陳麗;;Bezier曲線與A~*算法融合的移動(dòng)機(jī)器人路徑規(guī)劃[J];微型機(jī)與應(yīng)用;2017年02期
2 陳紫曄;;智能移動(dòng)機(jī)器人技術(shù)現(xiàn)狀及展望研究[J];電子世界;2016年20期
3 李仕偉;周坤;楊艷秋;李寶林;;大數(shù)據(jù)挖掘技術(shù)在在線教育平臺(tái)中的應(yīng)用淺析[J];信息通信;2016年09期
4 田澤宇;門朝光;湯亞楠;;基于形狀及空間關(guān)系的場(chǎng)景相似性檢索[J];電子學(xué)報(bào);2016年08期
5 謝,;;基于典型經(jīng)驗(yàn)路徑庫(kù)的路徑規(guī)劃算法[J];交通運(yùn)輸研究;2016年01期
6 徐兆輝;;移動(dòng)機(jī)器人路徑規(guī)劃技術(shù)的現(xiàn)狀與發(fā)展[J];科技創(chuàng)新與應(yīng)用;2016年03期
7 林娜;鄭亞男;;基于出租車軌跡數(shù)據(jù)的路徑規(guī)劃方法[J];計(jì)算機(jī)應(yīng)用與軟件;2016年01期
8 劉曦愷;;地面移動(dòng)機(jī)器人研究與發(fā)展趨勢(shì)[J];科技展望;2015年24期
9 甘孟壯;樊興華;;基于聚類和支持向量機(jī)相結(jié)合的熱點(diǎn)發(fā)現(xiàn)[J];現(xiàn)代計(jì)算機(jī);2013年09期
10 胡繼華;黃澤;鄧俊;謝,;;融合出租車駕駛經(jīng)驗(yàn)的層次路徑規(guī)劃方法[J];交通運(yùn)輸系統(tǒng)工程與信息;2013年01期
相關(guān)碩士學(xué)位論文 前4條
1 潘柔;矢量面狀地物的空間場(chǎng)景相似性計(jì)算方法研究[D];長(zhǎng)安大學(xué);2015年
2 徐培培;復(fù)雜動(dòng)態(tài)環(huán)境下移動(dòng)機(jī)器人的全局路徑規(guī)劃算法研究[D];北京郵電大學(xué);2009年
3 賈潤(rùn)亮;多機(jī)器人系統(tǒng)路徑規(guī)劃研究[D];太原理工大學(xué);2008年
4 丁濱;基于GIS的空間數(shù)據(jù)查詢及管理技術(shù)研究與實(shí)現(xiàn)[D];南京航空航天大學(xué);2008年
本文編號(hào):2093694
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2093694.html