光纖光柵低溫特性及復(fù)合材料結(jié)構(gòu)熱屬性監(jiān)測方法研究
本文選題:光纖光柵 + 啁啾效應(yīng) ; 參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:隨著航空航天復(fù)合材料結(jié)構(gòu)的大型化、復(fù)雜化和任務(wù)模式多元化發(fā)展,其在服役期間將不可避免地受到多種復(fù)雜環(huán)境因素的影響,這勢必會導(dǎo)致結(jié)構(gòu)可靠性大幅下降。航空航天復(fù)合材料結(jié)構(gòu)健康狀態(tài)很大程度上與其所受熱載荷響應(yīng)特性密切相關(guān),因此,本文基于光纖傳感技術(shù)分別對典型航空航天復(fù)合材料結(jié)構(gòu)的溫度、熱應(yīng)變、熱屬性監(jiān)測方法展開研究,為結(jié)構(gòu)服役安全狀態(tài)的評估提供依據(jù)。主要工作包括以下幾個方面:首先,理論分析了光纖光柵傳感器傳感機(jī)理,并從數(shù)值仿真和實驗不同角度研究了不同溫度、應(yīng)變下光纖光柵傳感器的響應(yīng)光譜特性,研究并驗證了光纖光柵低溫啁啾效應(yīng)的形成機(jī)理。其次,提出了一種管式光纖光柵溫度傳感器的封裝方法,并針對不同的使用工況,研究了打孔型管式封裝光纖光柵溫度傳感器。在此基礎(chǔ)上,探究了在不同封裝形式下光纖光柵傳感器的溫度感知特性。再次,選取碳纖維圓筒結(jié)構(gòu)、碳纖維實心桿結(jié)構(gòu)為研究對象,構(gòu)建了基于分布式光纖光柵傳感網(wǎng)絡(luò)的復(fù)合材料結(jié)構(gòu)熱應(yīng)變測試系統(tǒng),并分析了光纖光柵傳感器與電阻應(yīng)變片同時對結(jié)構(gòu)進(jìn)行熱應(yīng)變監(jiān)測時的測試誤差。接著,構(gòu)建了碳纖維蜂窩夾芯結(jié)構(gòu)熱載荷測試系統(tǒng),研究了高低溫?zé)彷d荷下植入試件不同鋪層位置的光纖光柵傳感器反射光譜響應(yīng)特征;提出一種基于表貼式光纖光柵力學(xué)模型的復(fù)合材料板結(jié)構(gòu)熱膨脹系數(shù)計算方法,并通過數(shù)值仿真驗證了方法的可行性。最后,構(gòu)建了基于LabVIEW的光纖光柵硬件測試系統(tǒng),提出了光纖光柵多參量監(jiān)測系統(tǒng)軟件的功能需求以及框架方案,設(shè)計并實現(xiàn)了光纖光柵多參量監(jiān)測系統(tǒng)主程序,同時完成人機(jī)交互界面的設(shè)計。
[Abstract]:With the development of large-scale, complex and mission mode of aerospace composite structure, it will inevitably be affected by a variety of complex environmental factors during service, which will inevitably lead to a large decline in structural reliability. The health state of aerospace composite structures is closely related to the response characteristics of thermal loads. Therefore, the temperature and thermal strain of typical aerospace composite structures are studied based on optical fiber sensing technology. The thermal attribute monitoring method is studied to provide the basis for the evaluation of the safety state of the structure in service. The main work includes the following aspects: firstly, the sensing mechanism of fiber grating sensor is analyzed theoretically, and the response spectrum characteristics of fiber grating sensor under different temperature and strain are studied from different angles of numerical simulation and experiment. The formation mechanism of low temperature chirp effect of fiber gratings is studied and verified. Secondly, an encapsulation method of tubular fiber Bragg grating temperature sensor is proposed, and the perforated tube packaged fiber grating temperature sensor is studied according to different operating conditions. On this basis, the temperature sensing characteristics of fiber Bragg grating sensors in different packaging forms are investigated. Thirdly, the structure of carbon fiber cylinder and solid rod of carbon fiber is selected as the research object, and the thermal strain measurement system of composite structure based on distributed fiber grating sensor network is constructed. The measurement error of fiber grating sensor and resistance strain gauge for thermal strain monitoring of the structure is analyzed. Then, the thermal load measurement system of carbon fiber honeycomb sandwich structure is constructed, and the reflection spectrum response characteristics of fiber Bragg grating sensors with different layering positions are studied under high and low temperature thermal loads. A method for calculating the thermal expansion coefficient of composite plate structure based on the mechanical model of surface fiber Bragg grating is proposed. The feasibility of the method is verified by numerical simulation. Finally, the hardware testing system of fiber Bragg grating based on LabVIEW is constructed. The function requirement and frame scheme of fiber grating multi-parameter monitoring system software are put forward, and the main program of fiber Bragg grating multi-parameter monitoring system is designed and realized. At the same time, the design of man-machine interface is completed.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212;TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王若藝;張婧帆;;無損檢測技術(shù)及其應(yīng)用[J];廣東化工;2014年17期
2 劉鐵根;王雙;江俊峰;劉琨;尹金德;;航空航天光纖傳感技術(shù)研究進(jìn)展[J];儀器儀表學(xué)報;2014年08期
3 周雅斌;曾捷;張倩昀;石慶華;李繼峰;曹海東;張先輝;;基于光纖傳感水熱平衡法測量碳纖維圓筒結(jié)構(gòu)的熱擴(kuò)散系數(shù)[J];中國激光;2013年11期
4 卿新林;王奕首;趙琳;;結(jié)構(gòu)健康監(jiān)測技術(shù)及其在航空航天領(lǐng)域中的應(yīng)用[J];實驗力學(xué);2012年05期
5 李威;郭權(quán)鋒;;碳纖維復(fù)合材料在航天領(lǐng)域的應(yīng)用[J];中國光學(xué);2011年03期
6 袁慎芳;邱雷;吳鍵;孫亞杰;王強(qiáng);;大型飛機(jī)的發(fā)展對結(jié)構(gòu)健康監(jiān)測的需求與挑戰(zhàn)[J];航空制造技術(shù);2009年22期
7 郭贛;;真空熱試驗的溫度測量系統(tǒng)[J];航天器環(huán)境工程;2009年01期
8 張紅潔;鄧凡平;肖劍;黃國君;王秋良;;光纖Bragg光柵液氦環(huán)境下溫度傳感特性的研究[J];光電子.激光;2008年05期
9 杜善義;關(guān)志東;;我國大型客機(jī)先進(jìn)復(fù)合材料技術(shù)應(yīng)對策略思考[J];復(fù)合材料學(xué)報;2008年01期
10 趙海濤;張博明;武湛君;王殿富;戴福洪;;光纖光柵智能復(fù)合材料基礎(chǔ)問題研究[J];傳感器與微系統(tǒng);2007年12期
相關(guān)碩士學(xué)位論文 前7條
1 尹澤霖;低溫下光纖布拉格光柵溫度靈敏性研究[D];北京交通大學(xué);2014年
2 張艷粉;基于LabVIEW的分布式光纖傳感技術(shù)既有砼橋梁的研究[D];南昌航空大學(xué);2012年
3 方學(xué)良;基于分布式網(wǎng)絡(luò)的航天器真空熱試驗控制系統(tǒng)[D];上海交通大學(xué);2012年
4 吳紅克;基于光纖環(huán)鏡和FBG溫度應(yīng)變同時測量的方法研究[D];東北大學(xué);2011年
5 付榮;光纖Bragg光柵低溫傳感特性研究[D];武漢理工大學(xué);2011年
6 聶文偉;基于LabVIEW的光纖干涉?zhèn)鞲行盘柦庹{(diào)和定位研究[D];北京交通大學(xué);2008年
7 蘇俠杰;無限長FGM圓筒穩(wěn)態(tài)熱應(yīng)力的有限元研究[D];河北工程大學(xué);2008年
,本文編號:2080872
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2080872.html