寒地大豆病蟲害診斷方法研究
本文選題:大豆病蟲害診斷 + 層次分析法。 參考:《東北農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:在我國專業(yè)農(nóng)業(yè)診斷知識的匱乏和專業(yè)農(nóng)業(yè)專家的稀缺之間的矛盾已經(jīng)日益嚴(yán)重,也嚴(yán)重阻礙了我國農(nóng)業(yè)精準(zhǔn)化、現(xiàn)代化的發(fā)展,而解決這一矛盾的重要渠道,就是實(shí)現(xiàn)農(nóng)業(yè)的智能化。在我國眾多大豆種植區(qū)域中病蟲害的存在往往會(huì)造成10%以上的直接經(jīng)濟(jì)損失,個(gè)別地區(qū)會(huì)達(dá)到30%以上,多種形式的病蟲害已經(jīng)極大的制約我國出產(chǎn)的大豆的產(chǎn)量及品質(zhì)。目前人工智能技術(shù)已廣泛應(yīng)用于疾病診斷領(lǐng)域,人工神經(jīng)網(wǎng)絡(luò)在作物病蟲害診斷中的應(yīng)用已成為一種流行趨勢。因此本文擬針對大豆病蟲害進(jìn)行精準(zhǔn)判定,選取模糊神經(jīng)網(wǎng)絡(luò)進(jìn)行模型建立,并引入AHP層次分析法自動(dòng)生成和調(diào)整隸屬度函數(shù),探討結(jié)合模糊神經(jīng)網(wǎng)絡(luò)與AHP層次分析法進(jìn)行病蟲害診斷的可行途徑。通過仿真實(shí)驗(yàn)顯示,利用模糊神經(jīng)網(wǎng)絡(luò)與層次分析法相結(jié)合的模型用于大豆病蟲害診斷具有泛化能力強(qiáng)、診斷速度快、正確率高等優(yōu)點(diǎn),不失為一個(gè)好的選擇。具體內(nèi)容如下:首先,輸出采用7種我國具有代表性的食心蟲等蟲害。對182個(gè)大豆蟲害樣品,依據(jù)危害方式、危害癥狀等8種性狀進(jìn)行診斷,選擇136個(gè)大豆蟲害樣本作為訓(xùn)練集,并用46個(gè)樣本作為測試集。通過對大豆病蟲害癥狀的收集整理和分析,分別使用對輸入/輸出向量進(jìn)行數(shù)字化編碼和對輸入使用AHP層次分析法,將用兩種方法處理后的數(shù)據(jù)用作神經(jīng)網(wǎng)絡(luò)的輸入向量。其次,分別建立3種用于訓(xùn)練和仿真的神經(jīng)網(wǎng)絡(luò)模型。分析BP神經(jīng)網(wǎng)絡(luò)中的最佳隱含層節(jié)點(diǎn)數(shù)、訓(xùn)練目標(biāo)、學(xué)習(xí)速率和訓(xùn)練次數(shù)等參數(shù)對網(wǎng)絡(luò)性能的影響;論證RBF徑向基神經(jīng)網(wǎng)絡(luò)中徑向基密度參數(shù)對訓(xùn)練結(jié)果的影響;同時(shí)論證模糊神經(jīng)網(wǎng)絡(luò)中隱層節(jié)點(diǎn)數(shù)和訓(xùn)練次數(shù)等參數(shù)對模型的響應(yīng)結(jié)果。最后,對比三種類型神經(jīng)網(wǎng)絡(luò)對不同大豆病蟲害進(jìn)行診斷后的準(zhǔn)確率,從實(shí)驗(yàn)結(jié)果論證了模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用于大豆病蟲害具有最佳診斷效果。實(shí)驗(yàn)結(jié)果表明,選擇層次分析法對輸入進(jìn)行處理以及模糊神經(jīng)網(wǎng)絡(luò)進(jìn)行建模,在46個(gè)測試樣本中,共有44個(gè)樣本進(jìn)行了預(yù)測,識別率高達(dá)95%,證明了該方法對大豆害蟲的判別是可行的。
[Abstract]:The contradiction between the lack of specialized agricultural diagnostic knowledge and the scarcity of specialized agricultural experts in China has become increasingly serious, which has also seriously hindered the development of agricultural precision and modernization in our country. It is to realize the intelligence of agriculture. In many soybean planting areas in China, the existence of pests and diseases will often cause more than 10% of direct economic losses, and a few areas will reach more than 30%. Many forms of diseases and pests have greatly restricted the yield and quality of soybean produced in China. At present, artificial intelligence technology has been widely used in the field of disease diagnosis, and the application of artificial neural network in the diagnosis of crop diseases and insect pests has become a popular trend. Therefore, this paper intends to accurately judge soybean pests and diseases, select fuzzy neural network to establish the model, and introduce AHP to automatically generate and adjust membership function. This paper discusses the feasible ways to diagnose diseases and insect pests by combining fuzzy neural network with AHP. The simulation results show that the model combined with fuzzy neural network and analytic hierarchy process has the advantages of strong generalization ability, fast diagnosis speed and high accuracy, and it is a good choice. The specific contents are as follows: first, the output uses 7 representative insect pests and other pests in China. Based on the diagnosis of 182 soybean pest samples, 136 soybean pest samples were selected as training set and 46 samples were used as test sets. By collecting and analyzing the symptoms of soybean diseases and insect pests, the input / output vector was digitalized and the input was analyzed by AHP. The data processed by two methods was used as the input vector of neural network. Secondly, three neural network models are established for training and simulation. The effects of the optimal number of hidden layer nodes, training target, learning rate and training times on the performance of the neural network are analyzed, and the effects of radial basis function density parameters on the training results in RBF radial basis function neural network are demonstrated. At the same time, the response results of the parameters such as the number of hidden layer nodes and the number of training times to the model in the fuzzy neural network are discussed. Finally, the accuracy of three types of neural networks for the diagnosis of different soybean pests and diseases was compared, and the best diagnostic effect of the fuzzy neural network applied to soybean diseases and insect pests was demonstrated from the experimental results. The experimental results show that the analytic hierarchy process (AHP) is selected to deal with the input and the fuzzy neural network is used to model the model. Out of 46 test samples, 44 samples are predicted. The recognition rate is as high as 95%, which proves that this method is feasible for the identification of soybean pests.
【學(xué)位授予單位】:東北農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S435.651;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬曉丹;關(guān)海鷗;祁廣云;劉剛;譚峰;;基于改進(jìn)級聯(lián)神經(jīng)網(wǎng)絡(luò)的大豆葉部病害診斷模型[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2017年01期
2 胡慧明;錢海忠;何海威;王驍;陳競男;;采用層次分析法的面狀居民地自動(dòng)選取[J];測繪學(xué)報(bào);2016年06期
3 邱志成;許燕飛;;基于自適應(yīng)RBF模糊神經(jīng)網(wǎng)絡(luò)的旋轉(zhuǎn)柔性鉸接梁的振動(dòng)控制[J];振動(dòng)與沖擊;2016年07期
4 李建軍;許燕;張冠;魏正英;張育斌;;基于BP神經(jīng)網(wǎng)絡(luò)預(yù)測和模糊控制的灌溉控制器設(shè)計(jì)[J];機(jī)械設(shè)計(jì)與研究;2015年05期
5 靳然;李生才;;農(nóng)作物害蟲預(yù)測預(yù)報(bào)方法及應(yīng)用[J];山西農(nóng)業(yè)科學(xué);2015年01期
6 石東源;熊國江;陳金富;李銀紅;;基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)和模糊積分融合的電網(wǎng)分區(qū)故障診斷[J];中國電機(jī)工程學(xué)報(bào);2014年04期
7 單文桃;陳小安;合燁;周明紅;劉俊峰;;基于免疫遺傳算法的模糊徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)在高速電主軸中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);2013年23期
8 魏清鳳;羅長壽;曹承忠;郭強(qiáng);;基于模糊神經(jīng)網(wǎng)絡(luò)的蔬菜病害診斷模型研究[J];湖北農(nóng)業(yè)科學(xué);2013年17期
9 賈花萍;;農(nóng)作物蟲情的模糊神經(jīng)網(wǎng)絡(luò)預(yù)測模型[J];浙江農(nóng)業(yè)學(xué)報(bào);2013年04期
10 李正明;張紀(jì)華;陳敏潔;;基于層次分析法的企業(yè)有序用電模糊綜合評估[J];電力系統(tǒng)保護(hù)與控制;2013年07期
相關(guān)碩士學(xué)位論文 前1條
1 鞠初旭;模糊神經(jīng)網(wǎng)絡(luò)的研究及應(yīng)用[D];電子科技大學(xué);2012年
,本文編號:2066252
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2066252.html