基于數(shù)據(jù)驅(qū)動(dòng)的控制系統(tǒng)故障診斷研究
本文選題:控制系統(tǒng) + 故障診斷 ; 參考:《華北電力大學(xué)》2017年碩士論文
【摘要】:隨著科學(xué)技術(shù)的不斷推進(jìn),現(xiàn)代控制系統(tǒng)的規(guī)模逐漸大型化,復(fù)雜程度也日益增大。為了提高控制系統(tǒng)的安全性和可靠性,需要對(duì)整個(gè)系統(tǒng)的運(yùn)行狀態(tài)進(jìn)行監(jiān)控,及時(shí)發(fā)現(xiàn)系統(tǒng)的故障信息,進(jìn)而采取相應(yīng)的措施,防止災(zāi)難性事故的發(fā)生。復(fù)雜的控制系統(tǒng)很難得到精確的數(shù)學(xué)模型,這導(dǎo)致傳統(tǒng)的基于模型的故障診斷方法在應(yīng)用上存在很大的局限性,而由于計(jì)算機(jī)技術(shù)的迅速發(fā)展,使得控制系統(tǒng)能夠獲得越來(lái)越多的數(shù)據(jù)信息,基于數(shù)據(jù)驅(qū)動(dòng)的故障診斷方法就是在這種情況下應(yīng)運(yùn)而生的。本文以控制系統(tǒng)為研究對(duì)象,利用了基于數(shù)據(jù)驅(qū)動(dòng)的方法進(jìn)行故障診斷研究。首先,需要對(duì)控制系統(tǒng)進(jìn)行故障檢測(cè),判斷有無(wú)故障的發(fā)生。針對(duì)這一問(wèn)題,提出了基于特征提取與聚類相結(jié)合的故障檢測(cè)方法。該方法利用慢特征分析對(duì)控制系統(tǒng)的正常數(shù)據(jù)與故障數(shù)據(jù)進(jìn)行特征提取,再采用模糊C-均值聚類算法,獲得正常數(shù)據(jù)的聚類中心,并選取簇類半徑作為閾值,構(gòu)建待檢測(cè)數(shù)據(jù)與聚類中心的差值模型,判斷控制系統(tǒng)的待檢測(cè)數(shù)據(jù)相對(duì)于正常狀態(tài)是否發(fā)生了偏離。其次,構(gòu)建控制系統(tǒng)故障庫(kù),對(duì)故障類型進(jìn)行分類。整個(gè)系統(tǒng)由于引入了閉環(huán)控制規(guī)律,使得故障在系統(tǒng)內(nèi)傳播,最終可能使不同的故障產(chǎn)生相近的數(shù)據(jù),因此將上述提取的故障特征與控制系統(tǒng)的故障特性相結(jié)合,提高故障特征的區(qū)分性。利用減法聚類的自適應(yīng)特性,確定待檢測(cè)的故障是否為故障庫(kù)中已知的故障類型。然后再對(duì)待檢測(cè)的故障數(shù)據(jù)進(jìn)行模式匹配,判斷故障類型。最后,將上述方法應(yīng)用到電廠的過(guò)熱汽溫控制系統(tǒng)中進(jìn)行方法驗(yàn)證。
[Abstract]:With the continuous advancement of science and technology, the scale of modern control system is becoming larger and more complex. In order to improve the security and reliability of the control system, it is necessary to monitor the running state of the whole system, find out the fault information in time, and then take corresponding measures to prevent the occurrence of catastrophic accidents. The precise mathematical model is rare in the hybrid control system, which leads to the limitation of the traditional model based fault diagnosis method, and because of the rapid development of computer technology, the control system can obtain more and more data information. The method based on the data driven fault diagnosis is in this case. This paper takes the control system as the research object and uses the data driven method to study the fault diagnosis. First, it needs to detect the fault in the control system and judge whether there is a fault. The characteristics of the normal data and the fault data of the control system are extracted, and then the fuzzy C- mean clustering algorithm is used to obtain the clustering center of the normal data, and the cluster radius is selected as the threshold, and the difference model of the data to be detected and the cluster center is constructed to determine whether the data to be detected in the control system occurs relative to the normal state. Secondly, the fault Bank of the control system is constructed, and the fault types are classified. The whole system is introduced the closed loop control law, which makes the fault spread in the system, and may eventually cause the different faults to produce the similar data. Therefore, the fault characteristics mentioned above are combined with the fault characteristics of the control system to improve the fault characteristics. By using the adaptive characteristic of subtraction clustering, it determines whether the fault to be detected is a known fault type in the fault bank. Then, the fault data is matched by mode and the type of fault is judged. Finally, the above method is applied to the superheated steam temperature control system of the power plant to verify the method.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273;TP277
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓敏;張占奎;;基于加權(quán)核獨(dú)立成分分析的故障檢測(cè)方法[J];控制與決策;2016年02期
2 童楚東;史旭華;;基于互信息的PCA方法及其在過(guò)程監(jiān)測(cè)中的應(yīng)用[J];化工學(xué)報(bào);2015年10期
3 何會(huì)會(huì);李鋼虎;要慶生;賀曉凱;石超雄;;用慢特征分析算法實(shí)現(xiàn)水聲信號(hào)盲分離[J];聲學(xué)技術(shù);2014年03期
4 張也維;范家璐;;基于重構(gòu)貢獻(xiàn)的雙容水箱故障診斷方法[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
5 周東華;劉洋;何瀟;;閉環(huán)系統(tǒng)故障診斷技術(shù)綜述[J];自動(dòng)化學(xué)報(bào);2013年11期
6 張君昌;李明;谷衛(wèi)東;;融合減法聚類與C-均值聚類的目標(biāo)定位方法[J];計(jì)算機(jī)仿真;2012年07期
7 唐甜;王旭昊;;某控制系統(tǒng)傳感器組件故障樹(shù)算法優(yōu)化設(shè)計(jì)[J];科學(xué)技術(shù)與工程;2012年16期
8 彭秀艷;柴艷有;滿新江;;基于PCA-KFCM的船舶柴油機(jī)故障診斷[J];控制工程;2012年02期
9 楊健維;何正友;趙靜;張海平;;一種基于小波變換的模糊聚類算法及其應(yīng)用[J];大連海事大學(xué)學(xué)報(bào);2008年03期
10 田質(zhì)廣;張慧芬;;基于遺傳聚類算法的油中溶解氣體分析電力變壓器故障診斷[J];電力自動(dòng)化設(shè)備;2008年02期
相關(guān)博士學(xué)位論文 前1條
1 牛征;基于多元統(tǒng)計(jì)分析的火電廠控制系統(tǒng)故障診斷研究[D];華北電力大學(xué)(河北);2006年
相關(guān)碩士學(xué)位論文 前4條
1 何思武;基于PCS-C型實(shí)驗(yàn)裝置的先進(jìn)控制策略實(shí)時(shí)仿真研究[D];河北科技大學(xué);2015年
2 遲金磊;變風(fēng)量空調(diào)系統(tǒng)的變工況故障檢測(cè)與診斷研究[D];上海交通大學(xué);2014年
3 劉暢;基于改進(jìn)的聚類算法的復(fù)雜系統(tǒng)故障診斷研究[D];沈陽(yáng)理工大學(xué);2013年
4 龔學(xué)兵;基于聚類分析的衛(wèi)星姿態(tài)控制系統(tǒng)故障診斷方法研究[D];哈爾濱工業(yè)大學(xué);2011年
,本文編號(hào):2008559
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2008559.html