基于大信號平均模型的buck變換器解耦控制系統(tǒng)設(shè)計(jì)與研究
本文選題:DC-DC變換器 + 大信號平均模型; 參考:《廣西大學(xué)》2017年碩士論文
【摘要】:DC-DC變換器作為開關(guān)電源和新能源分布式直流供電系統(tǒng)的核心技術(shù)發(fā)展十分迅速,目前DC-DC變換器小信號建模并采用線性反饋控制是一種成熟的方法,但這種方法在大信號條件下具有抗干擾能力弱、動態(tài)響應(yīng)性能低的問題。針對以上問題,本文提出兩種基于大信號平均模型的Buck變換器解耦控制系統(tǒng)設(shè)計(jì)方案,包括前饋解耦和前饋-逆系統(tǒng)解耦兩種解耦控制系統(tǒng)設(shè)計(jì),兩種方案均適用于其它DC-DC變換器拓?fù)浣Y(jié)構(gòu)。提出一種前饋解耦控制系統(tǒng)設(shè)計(jì)方案。該方案中將電壓外環(huán)和電流內(nèi)環(huán)作為被控對象,采用逆推法分別設(shè)計(jì)兩個(gè)環(huán)路的前饋解耦補(bǔ)償器,使電壓外環(huán)和電流內(nèi)環(huán)成為兩個(gè)相對獨(dú)立的回路。由于消除了電流內(nèi)環(huán)和電壓外環(huán)的耦合關(guān)系,在進(jìn)行PI調(diào)節(jié)器參數(shù)整定過程中明顯比常規(guī)雙閉環(huán)控制器效率更高。為解決前饋解耦控制系統(tǒng)中反饋控制器設(shè)計(jì)的問題,本文又提出前饋-逆系統(tǒng)解耦控制系統(tǒng)設(shè)計(jì)方案。該方案中被控對象中的電流內(nèi)環(huán)根據(jù)最優(yōu)化控制理論設(shè)計(jì)出前饋解耦補(bǔ)償器;電壓外環(huán)則采用逆系統(tǒng)理論與解耦控制理論相結(jié)合的方式設(shè)計(jì)逆系統(tǒng)解耦補(bǔ)償器,將電壓環(huán)補(bǔ)償為一階純積分環(huán)節(jié),并對輸入直流電源擾動和負(fù)載電流擾動設(shè)計(jì)前饋解耦補(bǔ)償器,將兩個(gè)非線性環(huán)路補(bǔ)償成偽線性系統(tǒng),再根據(jù)最優(yōu)化控制理論分別對電流內(nèi)環(huán)和電壓外環(huán)設(shè)計(jì)線性反饋控制器。同時(shí),為了更明顯的體現(xiàn)兩種新型控制系統(tǒng)在大信號條件下具有優(yōu)良的抗干擾能力和動態(tài)、靜態(tài)響應(yīng)特性,本文根據(jù)小信號模型法設(shè)計(jì)了常規(guī)雙閉環(huán)控制系統(tǒng)。通過matlab/simulink對三種Buck變換器控制系統(tǒng)進(jìn)行了仿真,驗(yàn)證了本文設(shè)計(jì)的兩種控制系統(tǒng)性能更優(yōu),其中前饋-逆系統(tǒng)解耦控制器性能最優(yōu)。最后,為了進(jìn)一步驗(yàn)證理論的可行性和控制系統(tǒng)性能的可靠性,基于RT-LAB半實(shí)物仿真平臺對Buck變換器前饋-逆系統(tǒng)解耦控制方案進(jìn)行了快速原型實(shí)驗(yàn)(RCP),被控對象通過實(shí)物實(shí)現(xiàn),即設(shè)計(jì)制作Buck變換器硬件電路,包括主電路、驅(qū)動電路和采樣電路;控制器虛擬實(shí)現(xiàn),即前饋-逆系統(tǒng)控制器通過RT-LAB目標(biāo)機(jī)模擬實(shí)現(xiàn),最終得到良好的實(shí)驗(yàn)效果,證明了理論的可行性。本文提出的兩種方案均是在變換器大信號模型基礎(chǔ)上進(jìn)行,一定程度上解決了大信號條件下的擾動問題,具有較大的理論研究價(jià)值和實(shí)用價(jià)值。
[Abstract]:As the core technology of the switching power supply and the new energy distributed DC power supply system, the DC-DC converter is developing rapidly. At present, it is a mature method to model the small signal of the DC-DC converter and adopt the linear feedback control. However, this method has the problem of weak anti-interference ability and low dynamic response performance under the condition of large signal. In this paper, two kinds of Buck converter decoupling control system design scheme based on large signal average model are proposed, including the feedforward decoupling and feedforward and inverse system decoupling control system design. The two schemes are applicable to other DC-DC converter topology structure. A feedforward decoupling control system design scheme is proposed. As the controlled object, the outer loop and the outer loop are used to design the feedforward decoupling compensator of two loops respectively, which make the voltage outer loop and the current inner loop become two relative independent loops. Because of eliminating the coupling relationship between the current inner loop and the external voltage loop, the double closed loop control of the PI regulator is obviously compared with the conventional double closed loop control. In order to solve the problem of feedback controller design in feedforward decoupling control system, the design of feedforward and inverse system decoupling control system is proposed in this paper. In this scheme, the current loop in the controlled object is designed with the feedforward decoupling compensator based on the optimal control theory, and the external voltage loop adopts the inverse system theory and decoupling control theory. The inverse system decoupling compensator is designed, the voltage loop is compensated to the first order pure integral link, and the feedforward decoupling compensator is designed for the input DC power disturbance and the load current disturbance. The two nonlinear loops are compensated into pseudo linear systems, and then the design lines of the current inner loop and the external voltage loop are separately based on the optimal control theory. At the same time, in order to show the two new control systems with excellent anti-interference ability, dynamic and static response characteristics under the condition of large signal, the conventional double closed loop control system is designed according to the small signal model method. Three kinds of Buck converter control systems are simulated by matlab/simulink. The performance of the two control systems designed in this paper is better, and the feedforward and inverse system decoupling controller has the best performance. Finally, in order to further verify the feasibility of the theory and the reliability of the control system performance, a fast prototype experiment (RCP) for the decoupling control scheme of the feedforward and inverse system of the Buck converter is carried out based on the RT-LAB hardware in the loop simulation platform. The control object is realized by the object, that is, the hardware circuit of the Buck converter is designed and made, including the main circuit, the driving circuit and the sampling circuit. The virtual realization of the controller, that is, the feedforward and inverse system controller is simulated by the RT-LAB target machine, and finally obtains good experimental results, and proves the feasibility of the theory. The two schemes proposed in this paper are all changing. Based on the large signal model of the transducer, it solves the disturbance problem in large signal condition to a certain extent, and has great theoretical research value and practical value.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273;TM46
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉知秋;王衛(wèi)龍;馬睿;;開關(guān)電源技術(shù)發(fā)展之淺見[J];電子制作;2014年06期
2 周國華;許建平;;開關(guān)變換器調(diào)制與控制技術(shù)綜述[J];中國電機(jī)工程學(xué)報(bào);2014年06期
3 鄭連清;單國棟;張定宇;;谷值電流控制三電平Buck變換器[J];電源技術(shù);2013年09期
4 周揚(yáng)忠;許海軍;毛潔;;永磁同步發(fā)電系統(tǒng)中轉(zhuǎn)矩和磁鏈精確線性化解耦控制[J];中國電機(jī)工程學(xué)報(bào);2012年24期
5 周華偉;溫旭輝;趙峰;張劍;;基于內(nèi)模的永磁同步電機(jī)滑模電流解耦控制[J];中國電機(jī)工程學(xué)報(bào);2012年15期
6 周國華;許建平;米長寶;金艷艷;;V~2C控制Buck變換器穩(wěn)定性分析[J];電工技術(shù)學(xué)報(bào);2011年03期
7 侯清江;張黎強(qiáng);許棟剛;;開關(guān)電源的基本原理及發(fā)展趨勢探析[J];制造業(yè)自動化;2010年09期
8 戴麗君;董新生;;直流變換器在電力通信系統(tǒng)的應(yīng)用研究[J];電力系統(tǒng)保護(hù)與控制;2009年22期
9 于廣亮;張保會;謝歡;汪成根;;基于逆系統(tǒng)方法的非線性最優(yōu)控制[J];電力自動化設(shè)備;2008年06期
10 陳亞愛;張衛(wèi)平;周京華;劉坤;;開關(guān)變換器控制技術(shù)綜述[J];電氣應(yīng)用;2008年04期
相關(guān)博士學(xué)位論文 前2條
1 賢燕華;直流變換器的魯棒控制算法[D];華南理工大學(xué);2014年
2 謝玲玲;DC-DC開關(guān)變換器的非線性動力學(xué)特性研究[D];廣西大學(xué);2012年
相關(guān)碩士學(xué)位論文 前5條
1 侯文晶;DC-DC開關(guān)變換器建模方法的研究與仿真分析[D];哈爾濱工業(yè)大學(xué);2013年
2 隆媛媛;多變量耦合系統(tǒng)的解耦控制設(shè)計(jì)和仿真[D];廣西師范大學(xué);2010年
3 楊亞澤;基于等效小參量法的DC-DC開關(guān)變換器建模與仿真[D];中南大學(xué);2010年
4 程心;非理想DC-DC開關(guān)變換器的建模分析與仿真[D];合肥工業(yè)大學(xué);2009年
5 尹麗云;DC/DC開關(guān)變換器建模及其非線性控制研究[D];廣西大學(xué);2007年
,本文編號:2000038
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2000038.html