天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

光纖傳感器激光焊接封裝及其熱壓傳感特性

發(fā)布時間:2018-06-06 11:36

  本文選題:光纖布喇格光柵 + 溫度靈敏度; 參考:《南昌大學(xué)》2017年碩士論文


【摘要】:光纖布喇格光柵(Fibet Bragg grating,FBG)具有徑細、質(zhì)量輕以及集信息傳輸與傳感于一體等優(yōu)良特性,是智能結(jié)構(gòu)首選的信息傳輸與傳感的載體,也是智能金屬結(jié)構(gòu)采用的傳感元件之一,廣泛應(yīng)用在各個工程領(lǐng)域中。光纖本身質(zhì)脆,纖細的石英光纖抗彎強度差,特別是寫入光柵后變得更易損壞,因此埋入金屬基體之前,需要對其進行有效的保護。文章研究了激光焊接封裝光纖光柵涉及到的光柵保護、宿主金屬焊接試驗、激光焊接封裝過程以及焊接封裝以后的傳感特性等問題。主要內(nèi)容如下:1)FBG封裝保護。采用化學(xué)鍍結(jié)合電鍍的方法對FBG進行金屬化,實驗結(jié)果顯示:FBG化學(xué)鍍Ni,Cu層表面均光滑,連續(xù),鍍層均勻致密,沒有明顯的開裂和起皮等缺陷;表面化學(xué)鍍Ni后電鍍Ni,電鍍Zn的FBG表面均平滑,光亮,沒有明顯的凸起顆粒,表層無裂紋。說明采用化學(xué)鍍結(jié)合電鍍的方法可以對FBG進行良好的金屬化保護。2)金屬化FBG的熱壓傳感性能測試。結(jié)果顯示:化學(xué)鍍Ni電鍍Ni和化學(xué)鍍Ni電鍍Zn金屬化FBG中心波長隨溫度變化而發(fā)生線性變化,溫度靈敏度分別為:20.23 pm/℃和34.36 pm/℃,分別是裸FBG溫度靈敏度的2.04倍和3.55倍。鍍Zn金屬化FBG對瞬態(tài)溫度變化響應(yīng)趨勢與裸FBG類似,這可能歸因于鍍層金屬的熱容量小,鍍層厚度較薄;瘜W(xué)鍍Ni結(jié)合電鍍Ni和化學(xué)鍍Ni結(jié)合電鍍Zn金屬化FBG中心波長與負載呈線性變化趨勢,且應(yīng)變靈敏度分別為:4.98pm/g和5.12pm/g。鍍Zn金屬化FBG的中心波長比裸FBG的穩(wěn)定性稍低,中心波長偏差值分別為0.013nm和0.008nm,產(chǎn)生這種現(xiàn)象的原因可能為鍍Zn金屬化FBG具有較高的溫度靈敏度。3)化學(xué)鍍膜過程中本征應(yīng)力演化的實時監(jiān)測。提出基于光纖傳感的化學(xué)鍍膜過程中本征應(yīng)力的計算模型,并對化學(xué)鍍Cu和化學(xué)鍍Ni過程中產(chǎn)生的本征應(yīng)力進行了實時監(jiān)測。實驗結(jié)果顯示:化學(xué)鍍Cu過程中FBG中心波長發(fā)生藍移,薄膜在生長過程中對監(jiān)測光柵施加壓應(yīng)力,三次鍍Cu實驗中,產(chǎn)生的本征應(yīng)力分別為:17.80Mpa、23.65Mpa和28.04Mpa;化學(xué)鍍Ni實驗結(jié)果顯示:化學(xué)鍍Ni試驗中,監(jiān)測光柵中心波長發(fā)生紅移,累積應(yīng)力表現(xiàn)為拉應(yīng)力,整個化學(xué)鍍Ni過程中產(chǎn)生的本征應(yīng)力為12.92MPa。采用基于光纖傳感的本征應(yīng)力監(jiān)測方法時傳感器的應(yīng)力靈敏度可以達到4.10 pm/MPa,準確度可達到0.24MPa。4)金屬化FBG激光焊接封裝。將金屬化FBG激光焊接封裝在銀銅薄箔表面,制成傳感頭,分析了FBG在焊接封裝后的熱壓傳感特性。實驗結(jié)果顯示:金屬化FBG和銀銅共晶合金結(jié)合良好,焊縫較窄且連續(xù),均勻細致。焊接封裝FBG溫度靈敏度為16.94 pm/℃,是裸FBG溫度靈敏度的1.76倍。FBG中心波長與載荷呈線性變化趨勢,焊接封裝FBG的應(yīng)變靈敏度為0.197 pm/g。研究了激光焊接過程中殘余應(yīng)力的產(chǎn)生對焊接封裝FBG中心波長的穩(wěn)定性,實驗結(jié)果顯示:在常溫下,激光焊接封裝FBG比裸FBG的穩(wěn)定性稍差,在整個穩(wěn)定性實驗時間段內(nèi)激光焊接封裝的FBG和裸FBG中心波長的偏差分別為0.091nm和0.006nm,產(chǎn)生這種現(xiàn)象的原因可能為FBG在焊接封裝過程中銀銅共晶合金發(fā)生變形致使整個FBG傳感器結(jié)構(gòu)有殘余應(yīng)力,影響FBG中心波長的穩(wěn)定性,此外,較高的溫度靈敏度也影響著整個焊接封裝FBG傳感器中心波長的穩(wěn)定性能。
[Abstract]:Fibet Bragg grating (FBG) has fine characteristics such as fine diameter, light mass, and integrated information transmission and sensing. It is the preferred carrier of information transmission and sensing in intelligent structure, and also one of the sensing elements used in intelligent metal structure. It is widely used in various engineering fields. Fiber itself is brittle and fine. The flexural strength of the British fiber is poor, especially when it is written into the grating, which is more easily damaged, so it is necessary to protect it effectively before embedding the metal matrix. The paper studies the grating protection, the host metal welding test, the sealing process of the laser welding and the sensing characteristics after the welding package. The main contents are as follows: 1) FBG encapsulation protection. FBG is metallized by electroless plating and electroplating. The experimental results show that FBG is electroless Ni, the surface of Cu layer is smooth and continuous, the coating is uniform and compact, there is no obvious cracking and peeling defects; the surface of the surface is electroless Ni plating Ni, the FBG surface of the electroplated Zn is smooth, bright, and no obvious. There is no crack in the surface of the convex particles. It shows that the method of electroless plating combined with electroplating can make a good metallization of FBG.2) the thermal pressure sensing performance test of the metallized FBG. The results show that the central wavelength of the electroless Ni electroplating Ni and the electroless Ni electroplating Zn metallized FBG center wavelength changes linearly with the temperature change, and the temperature sensitivity is respectively: 20.23 pm/ C and 34.36 pm/ C are 2.04 times and 3.55 times of bare FBG temperature sensitivity respectively. The response trend of Zn metallized FBG to transient temperature is similar to bare FBG, which may be attributed to the small thermal capacity of the plated metal and thin coating thickness. The electroless plating Ni combined with electroplating Ni and electroless plating Ni combined electroplating Zn metallized FBG center wavelength and load present The linear variation trend and strain sensitivity are as follows: the central wavelength of 4.98pm/g and 5.12pm/g. plated Zn metallized FBG is slightly lower than that of naked FBG, and the central wavelength deviation values are 0.013nm and 0.008nm, respectively. The cause of this phenomenon may be the intrinsic stress in the electroless plating process of the Zn metallized FBG with a higher temperature sensitivity.3). A calculation model of intrinsic stress in the process of electroless plating based on optical fiber sensing is proposed. The intrinsic stress produced in the electroless Cu and Ni electroless plating process is monitored in real time. The experimental results show that the FBG center wavelength is blue shift during the electroless plating of Cu, and the thin film exerts pressure stress on the monitoring grating during the process of growth. The intrinsic stresses produced in the three Cu experiments were 17.80Mpa, 23.65Mpa and 28.04Mpa, respectively. The results of electroless plating Ni showed that in the electroless plating Ni test, the central wavelength of the grating was red shift and the cumulative stress was expressed as tensile stress. The intrinsic stress produced in the whole electroless plating Ni process was based on the intrinsic stress based on optical fiber sensing for 12.92MPa.. The stress sensitivity of the sensor can reach 4.10 pm/MPa and the accuracy can reach 0.24MPa.4) metallized FBG laser welding package. The metal FBG laser welding is packaged on the surface of silver and copper foil to make a sensor head. The thermal pressure sensing characteristics of FBG after the welding are analyzed. The experimental results show that the co crystallization of the metal FBG and the silver copper alloy. The weld seam is relatively narrow and continuous and uniform and meticulous. The temperature sensitivity of the welded package FBG is 16.94 pm/ C, it is 1.76 times the temperature sensitivity of the bare FBG, the center wavelength of.FBG is linearly changing, the strain sensitivity of the welding package FBG is 0.197 pm/g., and the residual stress in the laser welding process is studied in the welding package FBG. The experimental results show that the stability of the laser welded package FBG is slightly worse than the naked FBG at normal temperature. The deviation of the laser welded FBG and the naked FBG center wavelength is 0.091nm and 0.006nm respectively during the whole time period of the stability experiment. The original cause of this phenomenon may be the Silver Copper Co crystallization in the welding process of the FBG. The deformation of gold causes the residual stress in the structure of the whole FBG sensor, which affects the stability of the FBG center wavelength. In addition, the high temperature sensitivity also affects the stability of the central wavelength of the entire welding package FBG sensor.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG456.7;TP212

【參考文獻】

相關(guān)期刊論文 前10條

1 甘望;王華強;謝忱;朱勇;代子倫;;光纖光柵管式封裝工藝研究[J];光學(xué)儀器;2016年06期

2 黃新波;廖明進;徐冠華;朱永燦;趙隆;;采用光纖光柵傳感器的輸電線路鐵塔應(yīng)力監(jiān)測方法[J];電力自動化設(shè)備;2016年04期

3 鄭艷;余有龍;梅鈺潔;李慧;;基于光纖光柵傳感的金屬薄板超聲探測[J];光子學(xué)報;2016年05期

4 南秋明;吳皓瑩;李盛;;一種光纖光柵振動傳感器的金屬化封裝方法[J];焊接學(xué)報;2016年02期

5 劉豐;馬文龍;郭璇;;EVA增敏的光纖光柵徑向壓力傳感特性研究[J];光學(xué)學(xué)報;2015年10期

6 朱軍;李成;單堯;朱良秋;汪輝;俞本立;;光纖光柵分段金屬化封裝實驗研究[J];大學(xué)物理實驗;2015年04期

7 劉浩;薛玉明;喬在祥;李微;張超;尹富紅;馮少君;;銅鋅錫硫薄膜材料及其器件應(yīng)用研究進展[J];物理學(xué)報;2015年06期

8 薛丁江;石杭杰;唐江;;新型硒化銻材料及其光伏器件研究進展[J];物理學(xué)報;2015年03期

9 胡遼林;張衛(wèi)超;;基于參考光柵的光纖光柵應(yīng)變測量溫度補償[J];實驗室研究與探索;2014年11期

10 蔣善超;隋青美;王靜;王正方;葉青霖;;流速/溫度共采的光纖布拉格光柵渦輪流速傳感器[J];光學(xué)精密工程;2014年10期

相關(guān)博士學(xué)位論文 前1條

1 馮艷;埋入金屬結(jié)構(gòu)的光纖Bragg光柵傳感性能研究[D];南昌大學(xué);2009年

,

本文編號:1986386

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1986386.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ce1c0***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com