基于振型疊加法的柔性結(jié)構(gòu)形態(tài)重構(gòu)研究
本文選題:有限元分析 + 形態(tài)重構(gòu) ; 參考:《上海大學(xué)》2016年碩士論文
【摘要】:大型柔性結(jié)構(gòu)廣泛應(yīng)用于航空航天領(lǐng)域,例如太陽能帆板、大飛機(jī)機(jī)翼和衛(wèi)星板狀天線等。這些航天結(jié)構(gòu)部件一般具有剛度小、質(zhì)量輕和面積大等特點(diǎn),在長期運(yùn)行時(shí)需要保證一定的運(yùn)行精度,但是在太空中該類結(jié)構(gòu)易受到輕微擾動而發(fā)生結(jié)構(gòu)變形和低頻振動,這對航天器造成了極大的安全隱患。因此,研究柔性結(jié)構(gòu)的形態(tài)重構(gòu)對航天部件的健康監(jiān)測具有非常重要的意義。針對柔性結(jié)構(gòu)的形態(tài)重構(gòu),一般是在柔性結(jié)構(gòu)表面布設(shè)傳感器測量結(jié)構(gòu)形態(tài)變化的物理信息如應(yīng)變、加速度等,然后利用形態(tài)重構(gòu)算法建立一種從測量的物理信息到全局位移場的轉(zhuǎn)換關(guān)系,從而實(shí)現(xiàn)結(jié)構(gòu)的形態(tài)重構(gòu)。本文以航天結(jié)構(gòu)健康監(jiān)測為研究背景,針對板狀柔性結(jié)構(gòu)模型,將基于光纖布拉格光柵(FBG,Fiber Bragg Grating)傳感器的應(yīng)變測量網(wǎng)絡(luò)、基于振型疊加法的位移估算方法和計(jì)算機(jī)圖形處理技術(shù)結(jié)合起來進(jìn)行柔性結(jié)構(gòu)形態(tài)重構(gòu)的方法技術(shù)研究。首先,本文針對所研究的柔性結(jié)構(gòu)進(jìn)行了基于有限元方法的結(jié)構(gòu)力學(xué)分析。在ANSYS有限元分析軟件中創(chuàng)建了目標(biāo)結(jié)構(gòu)的有限元模型并進(jìn)行了模態(tài)分析,得到了結(jié)構(gòu)的應(yīng)變振型和位移振型。通過靜力分析和諧響應(yīng)分析對結(jié)構(gòu)的變形形態(tài)做了分析并了解其結(jié)構(gòu)形變特征。同時(shí)結(jié)構(gòu)靜動態(tài)力學(xué)分析獲得的結(jié)構(gòu)變形響應(yīng)如應(yīng)變和位移為結(jié)構(gòu)形態(tài)重構(gòu)數(shù)值仿真提供了對比分析數(shù)據(jù)。其次,對柔性結(jié)構(gòu)形態(tài)重構(gòu)進(jìn)行了理論推導(dǎo)和數(shù)值仿真。振型疊加法首先利用少量測量應(yīng)變信息和應(yīng)變振型疊加關(guān)系獲取振型坐標(biāo),然后利用振型坐標(biāo)對位移振型進(jìn)行線性組合求出結(jié)構(gòu)的全局位移,從而建立了一種從測量離散應(yīng)變信息到結(jié)構(gòu)全局位移場的轉(zhuǎn)換關(guān)系。本文采用C#語言結(jié)合ANSYS二次開發(fā)接口技術(shù)對柔性結(jié)構(gòu)的形態(tài)重構(gòu)算法進(jìn)行了數(shù)值仿真,仿真結(jié)果表明針對柔性結(jié)構(gòu)簡單變形和復(fù)雜變形,此重構(gòu)技術(shù)具有良好的形態(tài)重構(gòu)效果。同時(shí),對感知網(wǎng)絡(luò)傳感器布局進(jìn)行了優(yōu)化研究并對重要參數(shù)進(jìn)行了分析。本文選用結(jié)構(gòu)形態(tài)重構(gòu)誤差作為傳感器布局優(yōu)化準(zhǔn)則,利用模擬退火優(yōu)化算法對傳感器的位置進(jìn)行了優(yōu)化研究,傳感器位置通過優(yōu)化后明顯提高了結(jié)構(gòu)形態(tài)重構(gòu)的重構(gòu)效果;然后分別分析了傳感器數(shù)量和方向?qū)Y(jié)構(gòu)形態(tài)重構(gòu)效果的影響;最后對傳感器的位置和方向做了多目標(biāo)優(yōu)化分析,結(jié)果表明傳感器多目標(biāo)優(yōu)化的結(jié)構(gòu)形態(tài)重構(gòu)效果更加顯著。此外,本文對激勵頻率、激勵幅值、模態(tài)階數(shù)和條件數(shù)的作用進(jìn)行了參數(shù)研究。最后,搭建了實(shí)驗(yàn)平臺并對形態(tài)重構(gòu)方法進(jìn)行了實(shí)驗(yàn)驗(yàn)證和分析。在實(shí)驗(yàn)中,首先在柔性結(jié)構(gòu)表面布設(shè)FBG應(yīng)變傳感器獲取結(jié)構(gòu)的離散應(yīng)變信息,然后利用基于振型疊加法的位移重構(gòu)算法對研究對象進(jìn)行重構(gòu)并通過可視化平臺進(jìn)行實(shí)時(shí)顯示,從而達(dá)到對柔性結(jié)構(gòu)形態(tài)變化的實(shí)時(shí)監(jiān)測。實(shí)驗(yàn)中分析了靜態(tài)變形和動態(tài)變形兩種情況,為了評估實(shí)驗(yàn)結(jié)果,激光位移傳感器在特定點(diǎn)測得的位移被用作參考位移,實(shí)驗(yàn)結(jié)果表明,在靜態(tài)和動態(tài)實(shí)驗(yàn)中,重構(gòu)位移和測量位移具有較好的吻合性,驗(yàn)證了基于振型疊加法的結(jié)構(gòu)位移重構(gòu)技術(shù)的有效性。
[Abstract]:Large flexible structures are widely used in the field of Aeronautics and Astronautics, such as solar panels, large aircraft wings and satellite plate antennas. These spaceflight components generally have the characteristics of small stiffness, light mass and large area, so it is necessary to ensure a certain operating precision in the long run, but this kind of structure is easily disturbed in space. Structural deformation and low frequency vibration have caused great potential safety hazards to the spacecraft. Therefore, it is of great significance to study the shape reconstruction of flexible structures for the health monitoring of space components. Strain, acceleration and so on, and then use the morphological reconstruction algorithm to establish a transformation relationship from the physical information of the measurement to the global displacement field, so as to realize the structure reconfiguration. This paper takes the space structure health monitoring as the research background, and aims at the plate flexible structure model, based on the fiber Prague grating (FBG, Fiber Bragg Grating) sensor. The strain measurement network, based on the displacement estimation method of the mode superposition method and the computer graphics processing technology, combines the method and technology of the configuration reconstruction of the flexible structure. Firstly, this paper analyzes the structural mechanics analysis based on the finite element method for the flexible structure studied, and creates the mesh in the ANSYS finite element analysis software. The finite element model of the standard structure is carried out and the modal analysis is carried out. The strain and displacement modes of the structure are obtained. Through the analysis of the static analysis and the harmonic response analysis, the deformation characteristics of the structure are analyzed and the structural deformation characteristics are understood. At the same time, the structural deformation response, such as strain and displacement, is the structural shape weight of the structure. The numerical simulation provides the comparative analysis data. Secondly, the theoretical derivation and numerical simulation of the shape reconstruction of the flexible structure are carried out. The vibration mode superposition method first uses a small amount of measurement strain information and the strain mode superposition relation to obtain the vibration shape coordinates, and then uses the mode coordinate to calculate the global displacement of the structure by linear combination of the displacement modes. A transformation relationship from measuring discrete strain information to structural global displacement field is established. This paper uses C# language and ANSYS two development interface technology to simulate the morphological reconstruction algorithm of flexible structure. The simulation results show that the reconstruction technique has a good shape for the simple deformation and complex deformation of the flexible structure. At the same time, the layout of sensor network sensor is optimized and the important parameters are analyzed. In this paper, the structure shape reconstruction error is selected as the optimization criterion of sensor layout, and the location of the sensor is optimized by simulated annealing optimization algorithm. The structure of sensor is improved obviously after the optimization of the sensor position. The effect of the reconfiguration of the morphologic reconfiguration is analyzed, and the influence of the number and direction of the sensor on the structure reconfiguration effect is analyzed. Finally, the multi-objective optimization analysis is made on the position and direction of the sensor. The results show that the structural shape reconstruction effect of the multi-objective optimization of the sensor is more significant. In addition, the excitation frequency, excitation amplitude, and mode are also analyzed in this paper. In the experiment, the FBG strain sensor is set up on the flexible structure surface to obtain the discrete strain information of the structure, and then the displacement reconstruction algorithm based on the mode superposition method is used to study the research object. In the experiment, two cases of static and dynamic deformation are analyzed in the experiment. In order to evaluate the experimental results, the displacement of the laser displacement sensor at a particular point is used as the reference displacement. The experimental results show that the static and dynamic results are in the static and dynamic conditions. In the state experiment, the reconstructed displacement and the measured displacement have a good agreement, which verifies the effectiveness of the structural displacement reconstruction technology based on the mode superposition method.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:V414;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高榮雄;高榮;王麗瓊;;基于MAC準(zhǔn)則的模擬退火算法傳感器優(yōu)化布置研究[J];中國市政工程;2014年05期
2 李德春;何龍軍;陳媛媛;歐陽秋平;;基于改進(jìn)粒子群算法的應(yīng)變傳感器優(yōu)化布置[J];振動.測試與診斷;2014年04期
3 伊小素;劉佳;葉向宇;林松;;基于概率模型的光纖光柵傳感網(wǎng)絡(luò)優(yōu)化布置[J];光電工程;2013年01期
4 程建旗;閆維明;陳彥江;何浩祥;張宇博;;傳感器優(yōu)化布置的改進(jìn)有效獨(dú)立算法[J];振動.測試與診斷;2012年05期
5 朱曉錦;季玲曉;張合生;金曉斌;易金聰;;基于空間正交曲率信息的三維曲線重構(gòu)方法分析[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2011年02期
6 覃柏英;林賢坤;張令彌;郭勤濤;;基于整數(shù)編碼遺傳算法的傳感器優(yōu)化配置研究[J];振動與沖擊;2011年02期
7 周國鵬;;光纖布喇格光柵(FBG)傳感器封裝技術(shù)的研究[J];壓電與聲光;2010年04期
8 狄海廷;付宜利;;利用光纖曲率傳感器重建三維曲面結(jié)構(gòu)[J];光學(xué)精密工程;2010年05期
9 李宗凱;;基于模態(tài)應(yīng)變能理論的傳感器優(yōu)化布置方法及算例[J];建筑結(jié)構(gòu);2009年S2期
10 姜連祥;李華旺;楊根慶;楊勤榮;黃海宇;;航天器自主故障診斷技術(shù)研究進(jìn)展[J];宇航學(xué)報(bào);2009年04期
,本文編號:1984154
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1984154.html