天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

幾類具有未建模動態(tài)非線性系統(tǒng)自適應神經(jīng)網(wǎng)絡控制

發(fā)布時間:2018-05-29 23:33

  本文選題:非線性系統(tǒng) + 自適應神經(jīng)網(wǎng)絡控制; 參考:《渤海大學》2017年碩士論文


【摘要】:本文在國內(nèi)外不確定非線性系統(tǒng)相關研究基礎上,應用神經(jīng)網(wǎng)絡控制理論,結合自適應反步遞推設計和魯棒控制理論,研究了具有未建模動態(tài)非線性系統(tǒng)的控制問題,提出有效的自適應神經(jīng)網(wǎng)絡控制方法.本文主要從下面兩個部分進行論述:1.針對一類具有未建模動態(tài)的非仿射非線性時滯系統(tǒng),發(fā)展了一種自適應神經(jīng)網(wǎng)絡智能控制方案。在控制器的設計過程中,應用變量分離技術克服系統(tǒng)的全狀態(tài)時滯函數(shù)的設計困難,利用反步遞推設計方法和神經(jīng)網(wǎng)絡的萬能逼近能力提出了能夠保證閉環(huán)系統(tǒng)所有信號一致最終有界的自適應神經(jīng)網(wǎng)絡控制方案。仿真結果驗證了所提出的控制方案的有效性。2.研究了一類具有未建模動態(tài)和輸入飽和的嚴格反饋非線性系統(tǒng)的自適應神經(jīng)網(wǎng)絡控制問題。在控制設計過程中,應用徑向基函數(shù)神經(jīng)網(wǎng)絡近似逼近未知非線性函數(shù);反步遞推設計方法來構造一種自適應神經(jīng)網(wǎng)絡控制方案。所提出的控制方案保證了閉環(huán)系統(tǒng)的半全局有界性,同時通過估計神經(jīng)網(wǎng)絡權向量范數(shù)的最大值,使得控制系統(tǒng)只需要一個自適應參數(shù),從而減小了計算量.仿真結果驗證了本章所提出的方法的有效性.
[Abstract]:In this paper, based on the research of uncertain nonlinear systems at home and abroad, the control problem of unmodeled dynamic nonlinear systems is studied by applying neural network control theory, combined with adaptive backstepping recursive design and robust control theory. An effective adaptive neural network control method is proposed. This paper mainly discusses the following two parts: 1. An adaptive neural network intelligent control scheme is developed for a class of non-affine nonlinear time-delay systems with unmodeled dynamics. In the design of the controller, the variable separation technique is used to overcome the difficulty of the design of the full state delay function of the system. Using the backstepping recursive design method and the universal approximation ability of the neural network, an adaptive neural network control scheme is proposed, which can guarantee the uniform and ultimately bounded signals of the closed-loop system. Simulation results verify the effectiveness of the proposed control scheme. The adaptive neural network control problem for a class of strictly feedback nonlinear systems with unmodeled dynamics and input saturation is studied. In the process of control design, the radial basis function neural network is used to approximate the unknown nonlinear function, and the backstepping recursive design method is used to construct an adaptive neural network control scheme. The proposed control scheme guarantees the semi-global boundedness of the closed-loop system, and by estimating the maximum value of the weight vector norm of the neural network, the control system only needs one adaptive parameter, thus reducing the computational complexity. The simulation results verify the effectiveness of the proposed method in this chapter.
【學位授予單位】:渤海大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP273;TP183

【參考文獻】

相關期刊論文 前2條

1 張?zhí)炱?朱秋琴;;時變時滯非線性系統(tǒng)的自適應神經(jīng)網(wǎng)絡控制[J];控制與決策;2011年02期

2 ;Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties[J];Science China(Information Sciences);2010年02期

,

本文編號:1952927

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1952927.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶7f074***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com