環(huán)錠紡紗機(jī)鋼絲圈的在線檢測與故障診斷
本文選題:環(huán)錠紡紗機(jī)鋼絲圈 + 數(shù)據(jù)采集 ; 參考:《杭州電子科技大學(xué)》2017年碩士論文
【摘要】:環(huán)錠紡紗機(jī)是我國應(yīng)用最廣、效果最好的紡紗設(shè)備之一,鋼絲圈作為其最重要的部件之一,長期處于高速摩擦圓周運(yùn)行狀態(tài),極易出現(xiàn)局部熱量過高,造成嚴(yán)重磨損,從而導(dǎo)致運(yùn)行不平衡、有碰磨、有裂紋等故障。當(dāng)鋼絲圈出現(xiàn)故障時(shí),不僅會(huì)影響紡紗產(chǎn)品的質(zhì)量,而且會(huì)造成極大的生產(chǎn)資料浪費(fèi),阻礙紡紗機(jī)的持續(xù)運(yùn)行,不利于高效率生產(chǎn),甚至影響紡紗設(shè)備的壽命。實(shí)際生產(chǎn)中不同的紡紗機(jī)匹配不同鋼種類絲圈,這使得其運(yùn)行規(guī)律迥異,且鋼絲圈運(yùn)行速度快、數(shù)據(jù)量大、信息復(fù)雜等因素的影響,對(duì)鋼絲圈的數(shù)據(jù)采集和故障診斷造成了極大的難度。因此,紡紗行業(yè)急需一套可靠、高效、全面、通用的環(huán)錠紡紗機(jī)鋼絲圈在線數(shù)據(jù)檢測和故障診斷系統(tǒng),為紡紗企業(yè)提供科學(xué)的生產(chǎn)指導(dǎo)。針對(duì)以上的生產(chǎn)需求,本文研究的主要內(nèi)容如下:1)針對(duì)鋼絲圈種類繁多、運(yùn)動(dòng)過程復(fù)雜、運(yùn)行速度迅速、數(shù)量龐大等因素的限制,很難全面、準(zhǔn)確迅速的獲取所有鋼絲圈的實(shí)時(shí)數(shù)據(jù)。本文通過現(xiàn)場調(diào)研分析和理論研究,設(shè)計(jì)了基于CAN總線底層通信,且具有可靠性、時(shí)效性、靈敏性、通用性的三層分布式數(shù)據(jù)采集管控系統(tǒng)。經(jīng)過紡紗企業(yè)應(yīng)用表明,該套系統(tǒng)具有極大的企業(yè)應(yīng)用價(jià)值。2)針對(duì)當(dāng)前落后且過于簡單的鋼絲圈故障診斷方式,無法保證診斷正確率和時(shí)效性的問題。在結(jié)合鋼絲圈運(yùn)行特點(diǎn)的基礎(chǔ)上對(duì)故障診斷算法進(jìn)行了深入研究,引入了基于支持向量機(jī)的智能故障診斷算法,并提出了聯(lián)合時(shí)域頻域特征提取法進(jìn)行樣本特征提取,同時(shí)采用網(wǎng)格搜索和交叉驗(yàn)證法進(jìn)行參數(shù)選擇。通過對(duì)支持向量機(jī)故障診斷模型的構(gòu)建、分析與測試,結(jié)果表明該診斷耗時(shí)短,正確率達(dá)到88.0%,基本解決了中小紡紗企業(yè)鋼絲圈故障診斷問題。3)針對(duì)紡紗企業(yè)的生產(chǎn)需求,在研究的數(shù)據(jù)采集和故障診斷模型子系統(tǒng)的基礎(chǔ)上,從軟件角度,結(jié)合C/S與B/S技術(shù)模式實(shí)現(xiàn)采集和故障診斷子系統(tǒng)的集成與對(duì)接,并開發(fā)了一套功能齊全的友好型軟件管控系統(tǒng)。通過在紹興紡紗企業(yè)中的初步調(diào)試結(jié)果表明,該套系統(tǒng)基本實(shí)現(xiàn)了環(huán)錠紡紗機(jī)鋼絲圈的在線檢測與故障診斷功能。
[Abstract]:The ring spinning machine is one of the most widely used and effective spinning equipment in China. As one of its most important components, the steel wire ring is in the running state of high speed friction circle for a long time. As a result, the operation is unbalanced, there are rubbing, cracks and other faults. When the wire ring fails, it will not only affect the quality of spinning products, but also cause a great waste of production materials, hinder the continuous operation of spinning machines, is not conducive to high efficiency production, and even affect the life of spinning equipment. In actual production, different spinning machines match different kinds of steel wire rings, which make their running rules very different, and the influence of such factors as fast running speed, large amount of data, complex information and so on. It is very difficult to collect data and diagnose fault of steel coil. Therefore, the spinning industry is in urgent need of a reliable, efficient, comprehensive and universal on-line data detection and fault diagnosis system for steel rings of ring spinning machines, which provides scientific production guidance for spinning enterprises. In view of the above production demand, the main contents of this paper are as follows: 1) it is very difficult to be comprehensive because of the restrictions of various types of steel coils, complex motion process, fast running speed, huge quantity, etc. Accurate and rapid access to all wire ring real-time data. Based on the field investigation and theoretical research, this paper designs a three-layer distributed data acquisition and control system based on CAN bus, which has reliability, timeliness, sensitivity and versatility. The application of spinning enterprise shows that the system has great application value. 2) aiming at the current backward and too simple fault diagnosis method of steel coil, it can not guarantee the correct rate and timeliness of diagnosis. Based on the characteristics of steel coil operation, the fault diagnosis algorithm is deeply studied, and the intelligent fault diagnosis algorithm based on support vector machine is introduced, and a joint time-domain and frequency-domain feature extraction method is proposed for sample feature extraction. At the same time, the method of grid search and cross validation is used to select parameters. Through the construction, analysis and test of the support vector machine fault diagnosis model, the results show that the diagnosis time is short and the correct rate is 88.0, which basically solves the steel ring fault diagnosis problem of small and medium-sized spinning enterprises. On the basis of the data acquisition and fault diagnosis model subsystem, the integration and docking of the acquisition and fault diagnosis subsystem is realized by combining C / S and B / S technology mode from the point of view of software. And has developed a set of complete function friendly software management and control system. The preliminary debugging results in Shaoxing spinning enterprise show that the system can basically realize the on-line detection and fault diagnosis of the steel ring of ring spinning machine.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TS103.822;TP277
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 焦衛(wèi)東;林樹森;;整體改進(jìn)的基于支持向量機(jī)的故障診斷方法[J];儀器儀表學(xué)報(bào);2015年08期
2 董曉衛(wèi);章水龍;章友鶴;趙連英;郭權(quán)龍;;環(huán)錠紡紗企業(yè)減少用工與提升產(chǎn)品檔次途徑的探析[J];現(xiàn)代紡織技術(shù);2015年03期
3 王春娥;肖琴;;普瑞美公司Ultimo細(xì)紗單錠檢測系統(tǒng)的應(yīng)用[J];棉紡織技術(shù);2015年03期
4 宋曉亮;楊藝;張慧靈;劉基宏;;光電式斷紗檢測頭性能試驗(yàn)研究[J];棉紡織技術(shù);2015年03期
5 王文軍;;未來新型紡紗技術(shù)的核心是智能化[J];紡織機(jī)械;2015年01期
6 于學(xué)洋;惠晶;傅錫林;;基于模糊PID的鋼絲圈基片冷連軋機(jī)張力控制系統(tǒng)設(shè)計(jì)[J];紡織器材;2015年04期
7 蘇丁倉;;普瑞美單錠在線監(jiān)控Ultimo系統(tǒng)[J];紡織器材;2014年01期
8 閻磊;宋如勤;郝愛萍;;新型紡紗方法與環(huán)錠紡紗新技術(shù)[J];棉紡織技術(shù);2014年01期
9 盧洪波;王金龍;;基于LIBSVM和智能算法的電站鍋爐排煙溫度優(yōu)化[J];黑龍江電力;2013年04期
10 李紅衛(wèi);楊東升;孫一蘭;韓娟;;智能故障診斷技術(shù)研究綜述與展望[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年02期
相關(guān)博士學(xué)位論文 前1條
1 唐靜遠(yuǎn);模擬電路故障診斷的特征提取及支持向量機(jī)集成方法研究[D];電子科技大學(xué);2010年
相關(guān)碩士學(xué)位論文 前6條
1 鄒戩;中國紡織產(chǎn)業(yè)國際競爭力研究[D];東華大學(xué);2014年
2 朱春雷;支持向量機(jī)中核函數(shù)和參數(shù)選擇研究及其應(yīng)用[D];南京林業(yè)大學(xué);2011年
3 沈童;基于CAN總線的數(shù)據(jù)采集處理系統(tǒng)的設(shè)計(jì)[D];大連理工大學(xué);2010年
4 陳歡歡;基于支持向量機(jī)的故障診斷方法研究[D];哈爾濱工業(yè)大學(xué);2008年
5 謝芳芳;基于支持向量機(jī)的故障診斷方法[D];湖南大學(xué);2006年
6 王巖;中國紡織工業(yè)發(fā)展戰(zhàn)略研究[D];吉林大學(xué);2004年
,本文編號(hào):1903959
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1903959.html