天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于深度學(xué)習的表情識別

發(fā)布時間:2018-05-17 11:46

  本文選題:人臉表情識別 + 深度學(xué)習 ; 參考:《南京郵電大學(xué)》2017年碩士論文


【摘要】:人臉表情能夠表達人類的情緒、意圖等,人臉表情識別作為情感智能系統(tǒng)的關(guān)鍵技術(shù),是實現(xiàn)人機交互的重要基礎(chǔ)。傳統(tǒng)的表情識別中依靠人工精心設(shè)計的特征提取算法,不僅復(fù)雜,還會一定程度上丟失原有的表情特征信息。近年來,深度學(xué)習作為以純數(shù)據(jù)為驅(qū)動的特征學(xué)習算法,能夠自主地學(xué)習到樣本的更加本質(zhì)的特征,因此,本文將深度學(xué)習引入人臉表情識別任務(wù)中,探討及研究深度學(xué)習在表情識別中的應(yīng)用。本文的主要研究工作及成果總結(jié)如下:(1)擴增了人臉表情庫。人臉表情庫是表情識別的基本條件,本文對現(xiàn)有的表情庫進行人臉檢測、歸一化等預(yù)處理,并采用數(shù)據(jù)集擴增策略擴增了人臉表情庫。(2)研究了一種基于深度置信網(wǎng)絡(luò)(Deep Belief Network,DBN)的人臉表情識別方法。通過預(yù)訓(xùn)練和微調(diào)階段調(diào)整優(yōu)化DBN模型參數(shù),最頂層BP網(wǎng)絡(luò)輸出表情分類結(jié)果,在CK+數(shù)據(jù)庫上取得了91.16%的識別率。(3)研究了一種基于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)的人臉表情識別方法。人臉表情的變化往往是細微的,CNN可以捕捉到圖像的局部特征,組合低層特征構(gòu)成更加抽象的高層特征,從而更適合于二維表情圖像的分類。相比DBN,基于CNN的人臉表情識別方法取得的識別率提高了5.02%。(4)研究了一種基于NIN(Network in Network)的人臉表情識別方法。先對低層特征局部進行更好地抽象有利于提升高層特征的表征能力,NIN的卷積層具有較強的非線性特征提取能力,因而有利于復(fù)雜的人臉表情圖像的非線性特征的抽象和表達。相比CNN,基于NIN的人臉表情識別方法取得的識別率進一步提高了2.79%。(5)實現(xiàn)了一個人臉表情識別演示系統(tǒng)。該系統(tǒng)主要分為兩個功能,一是人臉表情自動識別,將人臉表情分為七類;二是卷積層可視化,可以直觀地觀察到每個卷積層卷積運算后輸出的特征圖。
[Abstract]:Facial expression can express human emotion, intention and so on. As a key technology of emotional intelligence system, facial expression recognition is an important foundation of human-computer interaction. Traditional facial expression recognition based on artificial carefully designed feature extraction algorithm is not only complex, but also lose the original facial feature information to some extent. In recent years, as a feature learning algorithm driven by pure data, depth learning is able to learn more essential features of samples independently. Therefore, depth learning is introduced into facial expression recognition task in this paper. To explore and study the application of depth learning in facial expression recognition. The main work and results of this paper are summarized as follows: 1) the facial expression database is expanded. Facial expression database is the basic condition of facial expression recognition. An expression recognition method based on Deep Belief Network (DBN) is proposed. By adjusting the parameters of the DBN model in pre-training and fine-tuning stage, the top-level BP network outputs the facial expression classification results. The recognition rate of 91.16% is obtained on CK database.) A new facial expression recognition method based on Convolutional Neural Network (CNN) based on convolutional neural network is studied. The change of facial expression is usually subtle CNN can capture the local features of the image and combine the low-level features to form a more abstract high-level feature which is more suitable for the classification of two-dimensional facial expression images. Compared with DBN, the recognition rate of facial expression recognition method based on CNN is 5.022.The paper studies a face expression recognition method based on NIN(Network in Network. Firstly, the local abstraction of lower level features is helpful to enhance the representation ability of high-level features. The convolution layer of NIN has a strong ability to extract nonlinear features, which is conducive to the abstraction and expression of nonlinear features in complex facial expression images. Compared with the CNN-based facial expression recognition method, the recognition rate obtained by the NIN method is further improved by 2.79. 5) A human facial expression recognition demonstration system is implemented. The system is mainly divided into two functions, one is automatic facial expression recognition, facial expression is divided into seven categories, the other is convolution layer visualization, can directly observe each convolution layer after convolution output features.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP181

【參考文獻】

相關(guān)期刊論文 前6條

1 盧官明;何嘉利;閆靜杰;李海波;;一種用于人臉表情識別的卷積神經(jīng)網(wǎng)絡(luò)[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2016年01期

2 盧官明;石婉婉;李旭;李曉南;陳夢瑩;劉莉;;基于LBP特征和稀疏表示的新生兒疼痛表情識別[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2015年01期

3 盧官明;左加闊;;基于不相關(guān)局部敏感鑒別分析的新生兒疼痛表情識別[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2013年06期

4 余凱;賈磊;陳雨強;徐偉;;深度學(xué)習的昨天、今天和明天[J];計算機研究與發(fā)展;2013年09期

5 薛雨麗;毛峽;張帆;;BHU人臉表情數(shù)據(jù)庫的設(shè)計與實現(xiàn)[J];北京航空航天大學(xué)學(xué)報;2007年02期

6 梁路宏 ,艾海舟 ,徐光yP ,張鈸;人臉檢測研究綜述[J];計算機學(xué)報;2002年05期

相關(guān)碩士學(xué)位論文 前1條

1 史于心;基于混合特征的面部表情識別算法研究[D];吉林大學(xué);2007年

,

本文編號:1901243

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1901243.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶38669***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产对白老熟女正在播放| 五月婷婷综合缴情六月| 国产一区欧美一区二区| 好吊一区二区三区在线看| 激情视频在线视频在线视频| 国产高清精品福利私拍| 国产一区二区三区不卡| 国产传媒一区二区三区| 欧美一区二区三区喷汁尤物| 婷婷基地五月激情五月| 国产精品久久熟女吞精| 欧美激情视频一区二区三区| 亚洲国产丝袜一区二区三区四 | 成人欧美精品一区二区三区| 亚洲日本加勒比在线播放| 在线中文字幕亚洲欧美一区| 国产精品久久香蕉国产线| 日木乱偷人妻中文字幕在线| 日韩人妻中文字幕精品| 亚洲国产精品国自产拍社区| 国产亚洲成av人在线观看| 久久91精品国产亚洲| 粉嫩国产美女国产av| 亚洲一区二区三区三区| 色婷婷丁香激情五月天| 日本亚洲精品在线观看| 亚洲视频一级二级三级| 日本精品理论在线观看| 日本高清一道一二三区四五区| 四季精品人妻av一区二区三区| 亚洲欧美中文字幕精品| 在线免费不卡亚洲国产| 亚洲深夜精品福利一区| 国产一区欧美午夜福利| 国产av天堂一区二区三区粉嫩| 自拍偷女厕所拍偷区亚洲综合| 狠狠做五月深爱婷婷综合| 亚洲第一香蕉视频在线| 亚洲欧美日韩精品永久| 91福利免费一区二区三区| 少妇激情在线免费观看|