風(fēng)電葉片型腔后固化恒溫控制理論研究與系統(tǒng)開發(fā)
本文選題:風(fēng)電葉片 + 后固化 ; 參考:《山東理工大學(xué)》2016年碩士論文
【摘要】:后固化是風(fēng)電葉片生產(chǎn)制造過程中的關(guān)鍵環(huán)節(jié)之一,該過程中葉片型腔內(nèi)部的恒溫控制效果將直接影響到產(chǎn)品的最終質(zhì)量。目前后固化常用的電阻絲加熱方式由于不具備吸熱特性,因此溫度變化具有非線性、時滯性而很難進行恒溫控制,極易造成葉片損傷。因此本文提出了循環(huán)水加熱的溫度控制模式,采用自適應(yīng)模糊PID控制技術(shù)實現(xiàn)型腔內(nèi)部恒溫控制,并針對目前溫控系統(tǒng)存在的智能程度低、監(jiān)控效果差等問題,研發(fā)了一整套風(fēng)電葉片型腔后固化恒溫控制系統(tǒng),具體研究成果如下:首先,建立了基于水加熱的總體溫度控制方案。根據(jù)水加熱器的特性,控制系統(tǒng)采用S7-200PLC控制可控硅導(dǎo)通角的溫控方案。根據(jù)現(xiàn)場生產(chǎn)條件,組建了基于Zigbee技術(shù)的溫度采集無線傳感網(wǎng)絡(luò),開發(fā)了相應(yīng)的無線傳輸模塊和傳感器硬件電路并編寫了協(xié)議程序和數(shù)據(jù)采集程序;采用數(shù)字濾波技術(shù)保障了溫度信號采集的準(zhǔn)確性;基于Delphi軟件設(shè)計了測試界面。測試結(jié)果表明,無線傳感器網(wǎng)絡(luò)進行數(shù)據(jù)采集具有較高的穩(wěn)定性和準(zhǔn)確性。其次,將模糊控制理論與PID控制技術(shù)相結(jié)合,開發(fā)了用于葉片型腔內(nèi)恒溫控制的自適應(yīng)模糊PID控制算法。該算法通過采集的葉片型腔內(nèi)部溫度,在規(guī)定的采樣周期內(nèi),計算出內(nèi)部溫度實測值與設(shè)定值的偏差和偏差變化率,將比較值送入模糊控制器進行運算,在線調(diào)用模糊控制規(guī)則對PID參數(shù)進行修改,計算得出PLC輸出端的電流值,自適應(yīng)調(diào)節(jié)水加熱器輸出功率,保證風(fēng)電葉片后固化型腔內(nèi)部溫度穩(wěn)定。仿真結(jié)果表明,該控制算法具有良好的動態(tài)特性。試驗結(jié)果表明,該算法控制下的后固化溫度誤差基本穩(wěn)定在±2°C,完全能滿足葉片生產(chǎn)需要。最后,基于MCGS組態(tài)軟件,開發(fā)了友好的上位機人機監(jiān)控界面,包括主界面和各個子界面,實現(xiàn)了當(dāng)前運行狀態(tài)的實時顯示、數(shù)據(jù)存儲及報警功能,并完成了與下位機的PPI通信,保證了整個后固化過程的順利進行。
[Abstract]:Post-curing is one of the key links in the manufacturing process of wind turbine blade. The effect of constant temperature control in the blade cavity will directly affect the final quality of the product. At present, the common heating method of resistive wire after curing is not endothermic, so the temperature change is nonlinear and time-delay, so it is difficult to control the temperature of resistor wire, so it is easy to cause blade damage. Therefore, the temperature control mode of circulating water heating is put forward in this paper. The adaptive fuzzy PID control technology is used to realize the constant temperature control in the cavity, and the current temperature control system has some problems such as low intelligence, poor monitoring effect and so on. A set of wind turbine blade cavity solidification constant temperature control system is developed. The specific research results are as follows: firstly, the overall temperature control scheme based on water heating is established. According to the characteristics of water heater, the temperature control scheme of S7-200PLC is used to control the turn-on angle of SCR. According to the field production conditions, the temperature acquisition wireless sensor network based on Zigbee technology is established, the corresponding wireless transmission module and sensor hardware circuit are developed, and the protocol program and data acquisition program are compiled. The accuracy of temperature signal acquisition is guaranteed by digital filtering technology, and the test interface is designed based on Delphi software. The test results show that data acquisition in wireless sensor networks has high stability and accuracy. Secondly, combining fuzzy control theory with PID control technology, an adaptive fuzzy PID control algorithm for blade cavity temperature control is developed. By collecting the internal temperature of the blade cavity, the deviation and the rate of deviation between the measured and set values of the internal temperature are calculated in the specified sampling period, and the comparison value is sent to the fuzzy controller for operation. The parameters of PID are modified by using fuzzy control rule on line, the current value of PLC output end is calculated, the output power of water heater is adjusted adaptively, and the internal temperature of solidified cavity after wind turbine blade is guaranteed to be stable. Simulation results show that the control algorithm has good dynamic characteristics. The experimental results show that the error of post-curing temperature under the control of this algorithm is basically stable at 鹵2 擄C, which can completely meet the needs of blade production. Finally, based on the MCGS configuration software, a friendly man-machine monitoring interface is developed, including the main interface and each sub-interface. The real-time display, data storage and alarm function of the current running state are realized, and the PPI communication with the lower computer is completed. The whole post curing process is guaranteed to proceed smoothly.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP273;TM305
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 阮博;烏建中;周俊杰;;風(fēng)電葉片模具電加熱系統(tǒng)溫度特性及控制算法研究[J];流體傳動與控制;2014年02期
2 張磊安;黃雪梅;;MW級風(fēng)機葉片單點疲勞加載系統(tǒng)設(shè)計、建模及試驗[J];太陽能學(xué)報;2013年09期
3 張軻;;智能溫控儀移動互聯(lián)的設(shè)計與實現(xiàn)[J];科技資訊;2013年25期
4 沈周義;;基于遠(yuǎn)程控制的溫度采集系統(tǒng)設(shè)計與實現(xiàn)[J];安徽電子信息職業(yè)技術(shù)學(xué)院學(xué)報;2012年06期
5 趙國亮;張永立;李洪興;;區(qū)間Ⅱ型變論域自適應(yīng)模糊邏輯控制器[J];大連理工大學(xué)學(xué)報;2012年06期
6 白建波;張小松;劉慶君;;模糊自適應(yīng)PI控制在空調(diào)系統(tǒng)中的研究[J];化工學(xué)報;2010年S2期
7 孫學(xué)巖;;基于Zigbee無線傳感器網(wǎng)絡(luò)的溫室測控系統(tǒng)[J];儀表技術(shù)與傳感器;2010年08期
8 陳進;王旭東;沈文忠;朱衛(wèi)軍;張石強;;風(fēng)力機葉片的形狀優(yōu)化設(shè)計[J];機械工程學(xué)報;2010年03期
9 王立國;王淑欣;路巍;;基于C8051F的遠(yuǎn)程多點溫度控制系統(tǒng)設(shè)計[J];自動化技術(shù)與應(yīng)用;2009年05期
10 尹航;張奇松;程志林;;基于ZigBee無線網(wǎng)絡(luò)的溫濕度監(jiān)測系統(tǒng)[J];機電工程;2008年11期
相關(guān)碩士學(xué)位論文 前3條
1 何軍慶;基于MCGS組態(tài)軟件和PLC控制的微型全自動高效包衣機的研究試制[D];南昌大學(xué);2008年
2 陳美謙;基于PLC/MCGS的電梯系統(tǒng)研究[D];廈門大學(xué);2007年
3 趙靜;基于MCGS下的旋流器自動控制系統(tǒng)[D];昆明理工大學(xué);2006年
,本文編號:1876111
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1876111.html