水下助力機器人動力學(xué)分析
本文選題:動力學(xué)分析 + 外骨骼機器人。 參考:《西華大學(xué)》2016年碩士論文
【摘要】:外骨骼機器人作為助力裝置,在軍事、醫(yī)療康復(fù)、需要高強度作業(yè)的行業(yè)中都得以應(yīng)用。但是外骨骼機器人在水下的應(yīng)用相比陸地外骨骼而言還有較大差距,國內(nèi)外還比較少有可參考的應(yīng)用和文獻。水下外骨骼機器人技術(shù)的難點在于,在水下復(fù)雜的環(huán)境中,機器人運動速度、水密度、入水深度、人機耦合的干涉等因素,使控制參數(shù)難以確定,難以實現(xiàn)對機器人的精確控制。本文旨在分析機器人水下應(yīng)用時的動力學(xué)問題,對其進行理論模型建模和仿真模型建模,得出各關(guān)節(jié)輸入力矩和輸出的運動之間的關(guān)系,從而得出控制函數(shù)。本文動力學(xué)分析的最終目的是要得到助力機器人的膝關(guān)節(jié)和髖關(guān)節(jié)液壓缸的驅(qū)動力、力矩的曲線和函數(shù),可以采用逆向動力學(xué)求解方式求解。在求解的開始,我們需要得到助力機器人在水下的運動情況,作為動力學(xué)分析求解的已知項。本文首先從兩個游泳實驗中得到相關(guān)的水下運動數(shù)據(jù),通過整理兩組數(shù)據(jù)驗證參數(shù)的正確性,將參數(shù)在Matlab中擬合成膝關(guān)節(jié)和髖關(guān)節(jié)的運動函數(shù),作為機器人水下運動各關(guān)節(jié)的理想運動曲線;建立運動學(xué)理論模型,將其理想運動曲線作為已知的運動輸入,采用轉(zhuǎn)換矩陣的方法對機器人進行運動學(xué)理論建模;利用Adams建立仿真模型,以關(guān)節(jié)理想運動函數(shù)作為驅(qū)動函數(shù),得到機器人各構(gòu)件的運動特性;以機器人和穿戴者作為整體,對模型進行水動力分析,做出相關(guān)假設(shè),得出在相應(yīng)條件下機器人在水下受力的理論公式,利用CFD建立二維仿真模型,得出其水下受力的分布云圖和阻力系數(shù);分析對比牛頓歐拉方法,kane方法,拉格朗日函數(shù)方法對動力學(xué)方程的求解,最后采用拉格朗日方程對機器人建立動力學(xué)理論模型,在Adams中以理想運動曲線、分析所得的所有已知力作為輸入,建立動力學(xué)仿真模型,得出目標函數(shù)。
[Abstract]:Exoskeleton robots, as booster devices, are used in military, medical and rehabilitation industries that require high-intensity operations. However, the underwater application of exoskeleton still has a big gap compared with the land exoskeleton, and there are few reference applications and literatures at home and abroad. The difficult point of underwater exoskeleton robot technology is that in the complex underwater environment, the control parameters are difficult to determine because of the factors such as the velocity of motion, water density, depth of water entering, and the interference of man-machine coupling, etc. It is difficult to control the robot accurately. The purpose of this paper is to analyze the dynamic problems in underwater application of the robot, to model the robot by theoretical model and simulation model, and to obtain the relationship between the input moment and the output motion of each joint, and then to obtain the control function. The ultimate purpose of dynamics analysis in this paper is to obtain the driving force, torque curve and function of the hydraulic cylinder of the knee joint and hip joint of the robot, which can be solved by reverse dynamics. At the beginning of the solution, we need to obtain the motion of the booster robot underwater as a known term in the dynamic analysis solution. In this paper, the relevant underwater motion data are obtained from two swimming experiments. By collating the two groups of data to verify the correctness of the parameters, the parameters are synthesized into the motion functions of the knee joint and the hip joint in Matlab. As the ideal motion curve of each joint of underwater motion of the robot, the kinematics theory model is established, the ideal motion curve is taken as the known motion input, and the kinematics theory model of the robot is established by the method of transformation matrix. The simulation model is established by Adams, and the motion characteristics of each component of the robot are obtained by using the ideal motion function of the joint as the driving function, and the hydrodynamic analysis of the model is made by the robot and the wearer as a whole, and the relevant assumptions are made. The theoretical formula of the underwater force of the robot under the corresponding conditions is obtained, the two-dimensional simulation model is established by using CFD, the distribution cloud diagram and drag coefficient of the underwater force are obtained, and the Newtonian Euler method is analyzed and compared with the Kane method. The Lagrange function method is used to solve the dynamic equation. At last, the Lagrange equation is used to establish the dynamic model of the robot. The ideal motion curve is used in Adams, and all known forces are analyzed as input. The dynamic simulation model is established and the objective function is obtained.
【學(xué)位授予單位】:西華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP242
【參考文獻】
相關(guān)期刊論文 前9條
1 柯冠巖;吳濤;李明;肖定邦;;水下機器人發(fā)展現(xiàn)狀和趨勢[J];國防科技;2013年05期
2 谷彥東;錢晉武;沈林勇;章亞男;;步態(tài)矯形器動力學(xué)建模和仿真驗證[J];機械設(shè)計;2013年01期
3 蔡兆云;肖湘江;;外骨骼機器人技術(shù)研究綜述[J];國防科技;2007年12期
4 歸麗華;楊智勇;顧文錦;張遠山;楊秀霞;;能量輔助骨骼服NAEIES的開發(fā)[J];海軍航空工程學(xué)院學(xué)報;2007年04期
5 謝海斌;沈林成;;水下機器人動態(tài)系統(tǒng)協(xié)同建模方法研究[J];系統(tǒng)仿真學(xué)報;2007年09期
6 王濤,張會明;基于ADAMS和MATLAB的聯(lián)合控制系統(tǒng)的仿真[J];機械工程與自動化;2005年03期
7 陳建平;發(fā)展我國載人深潛器的幾點思考[J];機器人技術(shù)與應(yīng)用;2001年02期
8 李岳進;蛙泳腿部動作的力學(xué)分析[J];體育函授通訊;2000年03期
9 韋起倫;關(guān)于蛙泳腿部技術(shù)動作分析[J];體育科技;1996年02期
相關(guān)碩士學(xué)位論文 前1條
1 徐長密;水下機器人—機械手系統(tǒng)動力學(xué)建模及運動控制研究[D];中國海洋大學(xué);2010年
,本文編號:1868478
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1868478.html