基于激光掃描的車(chē)輪輪廓測(cè)量?jī)x軟硬件設(shè)計(jì)
本文選題:輪對(duì) + 幾何參數(shù); 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:隨著鐵路事業(yè)的快速發(fā)展以及列車(chē)的不斷提速,行車(chē)安全與人們生活日益密切。輪對(duì)是行車(chē)過(guò)程中決定安全和穩(wěn)定的部件,輪緣高度、輪緣厚度、輪輞寬度、QR值等關(guān)鍵幾何參數(shù)必須及時(shí)進(jìn)行檢測(cè)。國(guó)內(nèi)外測(cè)量輪對(duì)踏面輪廓的測(cè)量方法分為動(dòng)態(tài)在線測(cè)量以及靜態(tài)測(cè)量;诙鄠(gè)傳感器的在線動(dòng)態(tài)測(cè)量成本較高;傳統(tǒng)的靜態(tài)測(cè)量使用第四種檢查器,測(cè)量效率低;自21世紀(jì)以來(lái),電子設(shè)備、傳感器領(lǐng)域的迅速發(fā)展,國(guó)內(nèi)外研制了幾種測(cè)量車(chē)輪幾何輪廓的測(cè)量?jī)x器,其原理以一維激光位移傳感器和二維激光位移傳感器為主:基于一維激光位移傳感器的測(cè)量裝置,用激光位移傳感器獲取縱向坐標(biāo),用緊密絲桿以及步進(jìn)電機(jī)獲取橫向坐標(biāo);基于二維激光位移傳感器的測(cè)量裝置,采用圖像處理的方法,獲取輪廓,測(cè)量精度低于一維激光位移傳感器的測(cè)量方法。本文以提高工作效率、兼顧經(jīng)濟(jì)成本的目的,結(jié)合國(guó)內(nèi)外測(cè)量?jī)x器的發(fā)展,本文設(shè)計(jì)了一種新的基于一維激光位移傳感器掃描的車(chē)輪輪廓測(cè)量?jī)x,移動(dòng)掃描部分由精度為0.05mm的一維激光位移傳感器和磁柵位移傳感器組成。移動(dòng)掃描部分每移動(dòng)0.05mm,磁柵位移傳感器發(fā)送信號(hào),使激光位移傳感器將測(cè)量數(shù)據(jù)通過(guò)藍(lán)牙發(fā)送給平板電腦。掃描完成后,可以得到包括輪緣厚度、輪緣高度、輪輞寬度和QR值的幾何參數(shù)。本文分析了該測(cè)量系統(tǒng)的隨機(jī)誤差和系統(tǒng)誤差并進(jìn)行了誤差補(bǔ)償,補(bǔ)償后測(cè)量重復(fù)性誤差小于0.05mm,各項(xiàng)測(cè)量參數(shù)的誤差小于0.1mm。本文的基本工作如下:1.介紹了所使用測(cè)量系統(tǒng)并分析其測(cè)量原理。2.對(duì)我國(guó)現(xiàn)行機(jī)車(chē)輪緣踏面標(biāo)準(zhǔn)進(jìn)行了說(shuō)明,并計(jì)算出LM標(biāo)準(zhǔn)輪緣踏面在二位直角坐標(biāo)系中的各點(diǎn)坐標(biāo)值。3.對(duì)系統(tǒng)的電路、硬件進(jìn)行了設(shè)計(jì)。編寫(xiě)了 Android系統(tǒng)測(cè)量軟件。4.分析了測(cè)量系統(tǒng)中由光線通過(guò)玻璃折射后產(chǎn)生的系統(tǒng)誤差以及由激光位移傳感器產(chǎn)生隨機(jī)誤差,對(duì)系統(tǒng)誤差進(jìn)行了補(bǔ)償。
[Abstract]:With the rapid development of railway and the increasing speed of trains, driving safety is becoming more and more close to people's life. Wheelset is the key component that determines the safety and stability in the driving process. The key geometric parameters such as the height of the wheel rim thickness rim width and QR value must be detected in time. The measuring methods of wheel tread profile at home and abroad can be divided into dynamic on-line measurement and static measurement. The cost of online dynamic measurement based on multiple sensors is high; the traditional static measurement uses the fourth type of detector, and the measurement efficiency is low; since the 21st century, the field of electronic equipment and sensor has developed rapidly. Several kinds of measuring instruments for measuring the geometric profile of wheels have been developed at home and abroad. The main principles of these instruments are one-dimensional laser displacement sensors and two-dimensional laser displacement sensors, which are based on one-dimensional laser displacement sensors. The longitudinal coordinate is obtained by laser displacement sensor, the transverse coordinate is obtained by tight wire rod and step motor, and the contour is obtained by image processing method based on the measuring device of two-dimensional laser displacement sensor. The measuring accuracy is lower than that of one-dimensional laser displacement sensor. In this paper, a new wheel profile measuring instrument based on one-dimensional laser displacement sensor scanning is designed in order to improve work efficiency and take account of economic cost and the development of measuring instruments at home and abroad. The moving scanning part consists of one dimensional laser displacement sensor with precision of 0.05mm and magnetic grating displacement sensor. For each move of 0.05mm in the mobile scanning section, the magnetic grating displacement sensor sends signals, which enable the laser displacement sensor to transmit the measurement data to the tablet computer via Bluetooth. After scanning, geometric parameters including flange thickness, rim height, rim width and QR value can be obtained. In this paper, the random error and systematic error of the measuring system are analyzed, and the error compensation is carried out. The error of repeatability is less than 0.05mm after compensation, and the error of each measurement parameter is less than 0.1mm. The basic work of this paper is as follows: 1: 1. The measuring system is introduced and its measuring principle is analyzed. The present standard of wheel flange tread of locomotive in China is explained, and the coordinate value of each point of LM standard flange tread in two right angle coordinate system is calculated. The circuit and hardware of the system are designed. The measuring software of Android system. 4. The system error caused by the refraction of light through glass and the random error produced by laser displacement sensor in the measurement system are analyzed. The system error is compensated.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP212.9;U270.33
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬旭旭;許新;;一種具有藍(lán)牙功能的IC卡預(yù)付費(fèi)電能表設(shè)計(jì)[J];電氣技術(shù);2016年06期
2 孫彬;李兵;;一種量化的激光位移傳感器傾角誤差補(bǔ)償模型[J];儀器儀表學(xué)報(bào);2015年05期
3 林培杰;朱安南;程樹(shù)英;;Android數(shù)據(jù)庫(kù)SQLite性能優(yōu)化[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2014年04期
4 高云飛;李紅信;虎巍;;基于最小二乘法橢圓的擬合點(diǎn)的選擇研究[J];信息通信;2014年04期
5 馬獲蕾;湯海鳳;;Android系統(tǒng)中SQLite數(shù)據(jù)庫(kù)的研究[J];電腦知識(shí)與技術(shù);2013年28期
6 周進(jìn)波;張磊;張敏;袁欽鵬;;基于Android系統(tǒng)藍(lán)牙開(kāi)發(fā)的研究與實(shí)現(xiàn)[J];光學(xué)儀器;2013年01期
7 喻瑗;;基于Android平臺(tái)的手機(jī)界面設(shè)計(jì)[J];知識(shí)經(jīng)濟(jì);2012年21期
8 侯新琦;李佳;;基于Android藍(lán)牙通訊的研究[J];電子世界;2012年11期
9 田垅;劉宗田;;最小二乘法分段直線擬合[J];計(jì)算機(jī)科學(xué);2012年S1期
10 張恒喜;史爭(zhēng)軍;;基于SQLite的Android數(shù)據(jù)庫(kù)編程[J];電腦編程技巧與維護(hù);2011年21期
相關(guān)博士學(xué)位論文 前1條
1 高巖;輪對(duì)幾何尺寸自動(dòng)與動(dòng)態(tài)在線測(cè)量方法的研究[D];北京交通大學(xué);2014年
相關(guān)碩士學(xué)位論文 前7條
1 魏有法;基于Android的LED燈光控制器的研究與設(shè)計(jì)[D];華僑大學(xué);2015年
2 田昊;基于Android系統(tǒng)的手機(jī)界面管理與設(shè)計(jì)[D];吉林大學(xué);2014年
3 賈琦;基于三角測(cè)量法的激光位移傳感器的研究[D];長(zhǎng)春理工大學(xué);2014年
4 張秀香;基于Android的健康管理系統(tǒng)客戶(hù)端的設(shè)計(jì)與實(shí)現(xiàn)[D];大連理工大學(xué);2012年
5 趙玉航;基于用戶(hù)心理模型的Android Widget界面設(shè)計(jì)研究[D];江南大學(xué);2012年
6 吳想想;基于Android平臺(tái)軟件開(kāi)發(fā)方法的研究與應(yīng)用[D];北京郵電大學(xué);2011年
7 王巍;基于Android平臺(tái)藍(lán)牙設(shè)備音頻應(yīng)用的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2009年
,本文編號(hào):1848493
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1848493.html