天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于EMD樣本熵和BP神經(jīng)網(wǎng)絡(luò)的乳化機故障診斷系統(tǒng)研究

發(fā)布時間:2018-04-29 14:40

  本文選題:乳化機 + EMD; 參考:《杭州電子科技大學(xué)》2017年碩士論文


【摘要】:乳化炸藥作為一種新式環(huán)保型炸藥,具有爆轟猛度強、抗水性良好等特點。同時乳化炸藥生產(chǎn)工藝簡單、產(chǎn)能大、生產(chǎn)成本低使得它在我國民爆行業(yè)得到了廣泛應(yīng)用。乳化機是乳化炸藥連續(xù)化、自動化生產(chǎn)線的核心設(shè)備,它是一種改良的旋轉(zhuǎn)機械設(shè)備,且具有高速旋轉(zhuǎn)的特性。要是內(nèi)部器械運轉(zhuǎn)異常,不僅會破壞生產(chǎn)工序的連續(xù)性能,影響產(chǎn)能和質(zhì)量,嚴重情況下還會發(fā)生機毀人亡的安全事故,造成巨大的經(jīng)濟損失和社會影響。為了能準確地檢測出乳化機潛藏的故障,提高維修效率,保證設(shè)備安全,本文研制了一套乳化機故障檢測和診斷系統(tǒng),并在實際生產(chǎn)中得到成功應(yīng)用。本文主要針對轉(zhuǎn)子故障、軸承故障等常見故障類型,在研究各類型的故障機理和發(fā)生征兆的基礎(chǔ)上,首先提出基于樣本熵的振動信號故障特征提取方法。針對樣本熵對原始信號獲取有限,故障特征區(qū)分度不高的缺陷,提出經(jīng)驗?zāi)J椒纸夥椒?Empirical Mode Decomposition,簡稱EMD)預(yù)處理樣本熵的故障特征提取方法。該方法利用EMD先把振動信號分解為若干個固有模態(tài)函數(shù)(Intrinsic Mode Function,簡稱IMF),然后選取若干具有代表性的IMF分量,將這些分量的樣本熵組成向量作為故障特征。EMD方法能將蘊藏在信號內(nèi)部的信息挖掘出來,有效克服樣本熵對信息獲取的局限性。結(jié)果表明,EMD結(jié)合樣本熵的方法不僅能夠區(qū)分不同類型的故障種類,還能提高了識別系統(tǒng)的容錯率。神經(jīng)網(wǎng)絡(luò)具備強非線性映射,以及自學(xué)習(xí)、自組織和自適應(yīng)的能力。將提取的故障特征作為BP神經(jīng)網(wǎng)絡(luò)的輸入,通過整理乳化機正常和故障的振動歷史數(shù)據(jù),分別構(gòu)造了振動特征參數(shù)的正常及故障狀態(tài)的訓(xùn)練樣本,并用訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)進行故障類型識別。結(jié)果表明,BP神經(jīng)網(wǎng)絡(luò)能快速地識別出滾動軸承的故障類型,診斷效果良好。在乳化炸藥生產(chǎn)線現(xiàn)有設(shè)備的基礎(chǔ)上完成硬件配置,基于工業(yè)控制軟件組態(tài)王平臺實現(xiàn)對PLC的數(shù)據(jù)交互,通過VB調(diào)用MATLAB神經(jīng)網(wǎng)絡(luò)功能實現(xiàn)上位機故障診斷系統(tǒng)的開發(fā)。實踐結(jié)果表明,本文構(gòu)建的乳化機故障診斷系統(tǒng)能夠根據(jù)實際數(shù)據(jù)準確地識別出乳化機的故障類型,診斷準確率高,實際應(yīng)用效果好。
[Abstract]:Emulsion explosive, as a new type of environmental protection explosive, has the characteristics of strong detonation intensity and good water resistance. At the same time, emulsified explosive has been widely used in our country because of its simple production process, large production capacity and low production cost. Emulsifying machine is the core equipment of continuous and automatic production line of emulsion explosive. It is an improved rotating machine and has the characteristics of high speed rotation. If the operation of internal instruments is abnormal, it will not only destroy the continuous energy of production process, but also affect the production capacity and quality. In serious cases, the safety accident of machine destruction and death will occur, resulting in huge economic loss and social impact. In order to accurately detect the hidden faults of emulsifying machine, improve the maintenance efficiency and ensure the safety of the equipment, a fault detection and diagnosis system for emulsifying machine has been developed in this paper, and has been successfully applied in practical production. This paper mainly aims at the common fault types such as rotor fault bearing fault and so on. On the basis of studying the fault mechanism and occurrence symptom of each type a method of vibration signal fault feature extraction based on sample entropy is proposed. Aiming at the defects of limited sample entropy acquisition and low fault feature differentiation, an empirical Mode decomposition (EMD) preprocessing sample entropy method for fault feature extraction is proposed. In this method, the vibration signal is first decomposed into intrinsic Mode functions by EMD, and then some representative IMF components are selected. The sample entropy component vector of these components can be used as fault feature. EMD method can mine the information hidden inside the signal and overcome the limitation of sample entropy to information acquisition. The results show that EMD combined with sample entropy can not only distinguish different types of faults, but also improve the fault tolerance of the identification system. Neural networks have strong nonlinear mapping, as well as self-learning, self-organization and adaptive capabilities. Taking the extracted fault features as the input of BP neural network, the normal and fault training samples of the vibration characteristic parameters are constructed by sorting out the history data of the normal and fault vibration of the emulsifier. The trained neural network is used to identify the fault types. The results show that BP neural network can quickly identify the fault types of rolling bearings, and the diagnosis effect is good. The hardware configuration is completed on the basis of the existing equipment in the emulsion explosive production line, the data exchange to PLC is realized based on the industrial control software Kingview platform, and the development of the upper computer fault diagnosis system is realized by calling the function of MATLAB neural network in VB. The practical results show that the emulsifying machine fault diagnosis system constructed in this paper can accurately identify the fault types of the emulsifier according to the actual data. The diagnosis accuracy is high and the practical application effect is good.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ560.5;TP183;TP277

【參考文獻】

相關(guān)期刊論文 前10條

1 李紅衛(wèi);楊東升;孫一蘭;韓娟;;智能故障診斷技術(shù)研究綜述與展望[J];計算機工程與設(shè)計;2013年02期

2 王貴滿;陳崗;周康波;;大產(chǎn)能敞開式乳化器的設(shè)計[J];煤礦爆破;2012年04期

3 郭峰;王斌;劉敏;;基于BP神經(jīng)網(wǎng)絡(luò)的時間序列預(yù)測研究[J];價值工程;2010年35期

4 趙志宏;楊紹普;申永軍;;一種改進的EMD降噪方法[J];振動與沖擊;2009年12期

5 郭磊;董秀成;;BP神經(jīng)網(wǎng)絡(luò)在變壓器故障診斷中的應(yīng)用[J];西華大學(xué)學(xué)報(自然科學(xué)版);2008年05期

6 蔡敬國;;乳化炸藥化學(xué)敏化效果的影響因素分析[J];煤礦爆破;2008年02期

7 ;A Fault Diagnosis Approach for Broken Rotor Bars Based on EMD and Envelope Analysis[J];Journal of China University of Mining & Technology;2007年02期

8 袁科新;劉枚;;神經(jīng)網(wǎng)絡(luò)在故障診斷中的應(yīng)用[J];山東商業(yè)職業(yè)技術(shù)學(xué)院學(xué)報;2006年04期

9 王孝紅;韓丹;景紹洪;;組態(tài)軟件上位機監(jiān)控系統(tǒng)設(shè)計與開發(fā)[J];信息技術(shù)與信息化;2005年06期

10 李富才,何正嘉,陳進;小波域相關(guān)濾波法及其早期故障預(yù)示應(yīng)用[J];振動工程學(xué)報;2005年02期

相關(guān)博士學(xué)位論文 前1條

1 胡勁松;面向旋轉(zhuǎn)機械故障診斷的經(jīng)驗?zāi)B(tài)分解時頻分析方法及實驗研究[D];浙江大學(xué);2003年

相關(guān)碩士學(xué)位論文 前8條

1 梅杰;基于人工神經(jīng)網(wǎng)絡(luò)的旋轉(zhuǎn)機械故障診斷專家系統(tǒng)[D];武漢理工大學(xué);2011年

2 廖科;基于小波變換的機械振動信號消噪研究及其DSP實現(xiàn)[D];南京航空航天大學(xué);2010年

3 伏馬力;粉狀炸藥生產(chǎn)線改性塔溫度控制系統(tǒng)[D];中南大學(xué);2009年

4 李吉光;乳化基質(zhì)和乳化炸藥熄爆研究[D];南京理工大學(xué);2009年

5 張茉;轉(zhuǎn)子系統(tǒng)振動故障的診斷方法及時頻分析技術(shù)研究[D];東北大學(xué);2008年

6 周曉明;乳化炸藥生產(chǎn)線安全監(jiān)測與故障診斷系統(tǒng)[D];華中科技大學(xué);2007年

7 姚桂艷;基于Web旋轉(zhuǎn)機械的故障診斷與預(yù)測[D];河北理工大學(xué);2005年

8 趙志宇;基于小波變換的滾動軸承故障診斷系統(tǒng)的研究與開發(fā)[D];大連理工大學(xué);2005年

,

本文編號:1820366

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1820366.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d0c2f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲国产另类久久精品| 国产一区二区三区av在线| 九九九热视频最新在线| 精品人妻一区二区三区四区久久| 国产精品亚洲二区三区| 99久久精品国产麻豆| 亚洲欧美日韩色图七区| 99精品国产自在现线观看| 老司机这里只有精品视频| 日本 一区二区 在线| 亚洲熟妇熟女久久精品 | 精品综合欧美一区二区三区| 国产又粗又硬又大又爽的视频 | 亚洲国产成人久久一区二区三区| 国产又粗又硬又长又爽的剧情| 国产精品免费视频专区| 国产内射在线激情一区| 日本人妻免费一区二区三区| 国产精品日韩欧美第一页| 国产精品欧美激情在线播放| 免费性欧美重口味黄色| 91超频在线视频中文字幕| 黄片免费观看一区二区| 激情内射亚洲一区二区三区| 亚洲乱码av中文一区二区三区| 最近最新中文字幕免费| 神马午夜福利免费视频| 亚洲永久一区二区三区在线| 亚洲国产黄色精品在线观看| 肥白女人日韩中文视频| 在线观看国产午夜福利| 日韩不卡一区二区在线| 亚洲欧美国产精品一区二区| 狠狠亚洲丁香综合久久| 免费亚洲黄色在线观看| 欧美成人精品一区二区久久| 好吊日视频这里都是精品| 欧美日韩国产一级91| 国产人妻精品区一区二区三区| 99国产高清不卡视频| 日韩女优精品一区二区三区|