基于視覺的非完整約束移動機器人位姿控制研究
本文選題:非完整約束 + 移動機器人; 參考:《哈爾濱工業(yè)大學》2017年碩士論文
【摘要】:隨著移動機器人技術日趨成熟,移動機器人在工業(yè)生產(chǎn)中扮演越來越重要的角色。尤其在物流、倉庫管理等領域,輪式移動機器人具有巨大的應用前景。為了縮短開發(fā)周期及成本,輪式移動機器人通常由舵輪驅動的電動叉車改裝而來,這類移動機器人的控制問題比較復雜。一方面機器人的輪子只能滾動不能沿軸向滑動,移動機器人的運動受到約束,屬于非完整約束系統(tǒng),導致移動機器人的位置、航向控制問題比較復雜。另一方面改裝之后,舵角控制系統(tǒng)對輸入指令跟蹤精度不足,導致機器人控制精度不足。本文設計了移動機器人的位姿控制算法,并給出了控制器參數(shù)的選取原則。通過在極坐標系下建立移動機器人的運動學模型,設計了線性定常的狀態(tài)反饋控制律,實現(xiàn)機器人的位置誤差、航向誤差同時收斂。通過構造李雅普諾夫函數(shù)對系統(tǒng)的局部穩(wěn)定性進行了證明,給出了系統(tǒng)穩(wěn)定范圍。通過對控制器參數(shù)進一步優(yōu)化,為了增加系統(tǒng)的穩(wěn)定范圍,當移動機器人的初始條件不滿足局部穩(wěn)定條件時,機器人會先運動到局部穩(wěn)定區(qū)域內(nèi),保證系統(tǒng)最終可以漸進穩(wěn)定。通過仿真驗證了算法的有效性。針對移動機器人舵角控制精度不足,本文提出了舵角控制系統(tǒng)的復合校正方案,提升了舵角控制系統(tǒng)對輸入指令的跟蹤精度。由電動叉車改裝而來的機器人舵角控制系統(tǒng)的跟蹤精度不高,輸出存在嚴重滯后,如果不經(jīng)校正,移動機器人的控制誤差不能滿足使用需求。為了提升舵角控制系統(tǒng)對輸入指令的跟蹤精度,采用按輸入補償?shù)膹秃闲UY構對舵角控制系統(tǒng)進行校正。為了合理選取控制器參數(shù),對舵角控制系統(tǒng)進行了建模,通過掃頻法得到舵角控制系統(tǒng)的幅頻特性曲線和相頻特性曲線,并對模型參數(shù)進行了辨識。由于按輸入補償?shù)膹秃闲U椒ㄖ行枰肭梆佇盘?論文根據(jù)移動機器人位姿控制器解析式,給出了舵角指令導數(shù),得到前饋環(huán)節(jié)所需的輸入信號導數(shù)。由于不需要對指令差值除以時間的方式求微分,在提高了舵角控制系統(tǒng)的跟蹤精度的同時也保證系統(tǒng)的穩(wěn)定性。經(jīng)過輸入補償復合校正后,移動機器人的位置控制誤差小于8 mm,航向控制誤差小于0.17 rad。
[Abstract]:With the development of mobile robot technology, mobile robot plays a more and more important role in industrial production. Especially in the fields of logistics and warehouse management, wheeled mobile robots have great application prospects. In order to shorten the development cycle and cost, wheeled mobile robots are usually refitted from electric forklifts driven by steering wheels. The control problems of this kind of mobile robots are complex. On the one hand, the wheel of the robot can only roll and can not slide along the axis, the movement of the mobile robot is constrained and belongs to the nonholonomic constraint system, which leads to the position of the mobile robot and the course control problem is more complicated. On the other hand, the rudder angle control system has insufficient tracking accuracy for input instructions, which leads to the lack of robot control accuracy. In this paper, the position and attitude control algorithm of mobile robot is designed, and the selection principle of controller parameters is given. By establishing the kinematics model of mobile robot in polar coordinate system, a linear constant state feedback control law is designed to realize the robot's position error and heading error converging simultaneously. The local stability of the system is proved by constructing Lyapunov function, and the stability range of the system is given. Through further optimization of controller parameters, in order to increase the stable range of the system, when the initial condition of the mobile robot does not satisfy the local stability condition, the robot will first move into the local stable region to ensure that the system can eventually be asymptotically stable. The effectiveness of the algorithm is verified by simulation. Aiming at the insufficient precision of rudder angle control of mobile robot, a compound correction scheme of rudder angle control system is proposed in this paper, which improves the tracking accuracy of rudder angle control system to input instructions. The tracking accuracy of the rudder angle control system of the robot modified from the electric forklift is not high, and the output is seriously delayed. If the control error of the mobile robot is not corrected, the control error of the mobile robot can not meet the requirements. In order to improve the tracking accuracy of rudder angle control system, the rudder angle control system is corrected by a compound correction structure based on input compensation. In order to select the controller parameters reasonably, the rudder angle control system was modeled. The amplitude-frequency characteristic curve and phase frequency characteristic curve of rudder angle control system were obtained by sweep frequency method, and the model parameters were identified. Due to the need to introduce feedforward signal into the compound correction method of input compensation, according to the analytical formula of position and attitude controller of mobile robot, the rudder angle instruction derivative is given, and the input signal derivative of feedforward link is obtained. Since it is not necessary to divide the differential value by time, the tracking accuracy of the rudder angle control system is improved and the stability of the system is guaranteed. After the compound correction of input compensation, the position control error of the mobile robot is less than 8 mm and the heading control error is less than 0.17 rad.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242
【參考文獻】
相關期刊論文 前10條
1 張文前;;智能移動機器人技術現(xiàn)狀及展望[J];電子技術與軟件工程;2016年08期
2 LIANG Zhenying;WANG Chaoli;;The Exponential Stabilization of Uncertain Chained Form Systems of Mobile Robots Based on Visual Servoing[J];Journal of Systems Science & Complexity;2016年02期
3 朱燕梅;侯文;鄭浩鑫;張寅;;系統(tǒng)辨識在伺服系統(tǒng)動態(tài)特性測試中的應用[J];現(xiàn)代雷達;2015年12期
4 洪嘉振;;關于剛體平面運動動力學方程——理論力學若干概念的思考[J];力學與實踐;2015年06期
5 賈丙西;劉山;張凱祥;陳劍;;機器人視覺伺服研究進展:視覺系統(tǒng)與控制策略[J];自動化學報;2015年05期
6 鄭穎;馬大為;姚建勇;胡健;;轉臺伺服系統(tǒng)擾動估計與補償控制[J];機床與液壓;2015年07期
7 任國華;;移動機器人軌跡跟蹤與運動控制[J];機械設計與制造;2014年03期
8 楊雪;唐功友;蓋紹婷;;自主式智能體有限時間停車問題及控制策略設計[J];控制與決策;2013年06期
9 鄭澤偉;霍偉;諸兵;;非完整移動機器人人全全局路徑跟蹤控制[J];控制理論與應用;2012年06期
10 王會勇;谷志峰;劉兵;;一種移動機器人的運動控制方法研究[J];現(xiàn)代電子技術;2007年22期
相關碩士學位論文 前1條
1 石尚;非完整輪式移動機器人魯棒有限時間控制算法研究[D];江蘇大學;2015年
,本文編號:1813957
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1813957.html