風(fēng)電磁懸浮偏航系統(tǒng)懸浮及切換控制研究
發(fā)布時(shí)間:2018-04-10 12:47
本文選題:磁懸浮偏航系統(tǒng) + 懸浮控制; 參考:《曲阜師范大學(xué)》2017年碩士論文
【摘要】:在環(huán)境污染尤其是霧霾天氣日益嚴(yán)重的今天,可再生能源發(fā)電備受關(guān)注。風(fēng)力發(fā)電作為一種清潔、具有廣闊發(fā)展前景的可再生能源,一直是各發(fā)達(dá)國(guó)家能源發(fā)展戰(zhàn)略的優(yōu)先發(fā)展方向。MW級(jí)風(fēng)力發(fā)電機(jī)組中的偏航系統(tǒng)是水平軸風(fēng)力發(fā)電機(jī)必不可少的組成部分。本文介紹了一種新的磁懸浮偏航系統(tǒng),研究了其中的懸浮控制問(wèn)題以及模態(tài)切換問(wèn)題。本文主要內(nèi)容可歸納如下:1)磁懸浮偏航系統(tǒng)懸浮和降落過(guò)程中的懸浮控制研究本文提出了一種基于非線性干擾觀測(cè)器的魯棒控制器用來(lái)控制磁懸浮偏航系統(tǒng)的懸浮和降落過(guò)程從而提高磁懸浮偏航系統(tǒng)在起浮和降落過(guò)程中的穩(wěn)定性。首先建立磁懸浮偏航系統(tǒng)和作用在系統(tǒng)上的側(cè)風(fēng)力的動(dòng)態(tài)模型,隨后推導(dǎo)出其狀態(tài)空間模型。其次,考慮到磁懸浮偏航系統(tǒng)存在的內(nèi)部未知干擾,通過(guò)采用backstepping方法設(shè)計(jì)一個(gè)基于非線性干擾觀測(cè)器的魯棒控制器使系統(tǒng)的輸出能漸近跟蹤參考軌跡,磁懸浮偏航系統(tǒng)起浮和降落的速度全局漸進(jìn)收斂到期望值。最后,仿真結(jié)果證明所提控制器具有良好的魯棒性,同時(shí)磁懸浮偏航系統(tǒng)可以實(shí)現(xiàn)在起浮和降落過(guò)程中平滑與穩(wěn)定運(yùn)行,因此,可以證實(shí)所提控制器的可行性和有效性。2)磁懸浮偏航系統(tǒng)模態(tài)切換研究由于磁懸浮偏航系統(tǒng)運(yùn)行過(guò)程中會(huì)進(jìn)行動(dòng)態(tài)懸浮和偏航懸浮之間的切換,因此為了保證磁懸浮偏航系統(tǒng)運(yùn)行的穩(wěn)定,需要研究磁懸浮偏航系統(tǒng)的模態(tài)切換穩(wěn)定性問(wèn)題。本文考慮磁懸浮系統(tǒng)的兩個(gè)運(yùn)行模態(tài),即動(dòng)態(tài)懸浮子系統(tǒng)和偏航懸浮子系統(tǒng)。為了保證子系統(tǒng)的穩(wěn)定運(yùn)行,首先,采用backstepping方法設(shè)計(jì)子系統(tǒng)的控制器;其次,鑒于子系統(tǒng)運(yùn)行穩(wěn)定不能保證切換系統(tǒng)的穩(wěn)定,本文采用基于平均駐留時(shí)間的方法設(shè)計(jì)切換規(guī)則,使得磁懸浮偏航系統(tǒng)滿足切換穩(wěn)定的要求;最后仿真驗(yàn)證了所設(shè)計(jì)的控制器以及切換規(guī)則的有效性。
[Abstract]:With the increasing environmental pollution, especially haze weather, renewable energy power generation has attracted much attention.Wind power generation is a kind of clean and promising renewable energy.The yaw system is an indispensable part of the horizontal axis wind turbine in the development strategy of the developed countries.In this paper, a new maglev yaw system is introduced. The levitation control problem and mode switching problem are studied.The main contents of this paper can be summarized as follows: (1) suspension control of maglev yaw system during suspension and landing. In this paper, a robust controller based on nonlinear disturbance observer is proposed to control the suspension of maglev yaw system.The floating and falling process can improve the stability of maglev yaw system during floating and falling.Firstly, the dynamic model of maglev yaw system and side wind force acting on the system is established, and then the state space model is derived.Secondly, considering the existence of unknown internal disturbances in maglev yaw system, a robust controller based on nonlinear disturbance observer is designed by using backstepping method to enable the output of the system to track the reference trajectory asymptotically.The speed of floating and falling of maglev yaw system converges globally to expected value.Finally, the simulation results show that the proposed controller has good robustness, and the maglev yaw system can run smoothly and stably in the process of floating and falling.The feasibility and effectiveness of the proposed controller. 2) Modal switching of maglev yaw system; because the dynamic suspension and yaw suspension switch will be carried out during the operation of the maglev yaw system,Therefore, in order to ensure the stability of the maglev yaw system, it is necessary to study the mode switching stability of the maglev yaw system.In this paper, we consider two modes of maglev system, that is, dynamic suspension subsystem and yaw suspension subsystem.In order to ensure the stable operation of the subsystem, firstly, the controller of the subsystem is designed by using the backstepping method; secondly, in view of the fact that the stability of the subsystem cannot guarantee the stability of the switching system, the method based on the average resident time is adopted to design the switching rules.The maglev yaw system can meet the requirements of switching stability. Finally, the simulation results show the effectiveness of the proposed controller and switching rules.
【學(xué)位授予單位】:曲阜師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM315;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 上官霞南;江東;顧玉武;楊嘉祥;;混合磁懸浮球系統(tǒng)變參數(shù)PID控制仿真[J];哈爾濱理工大學(xué)學(xué)報(bào);2007年02期
2 丁新平,楊俊友,孫榮斌;基于干擾觀測(cè)器PID控制的磁懸浮系統(tǒng)[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2005年03期
3 倪受元;風(fēng)力發(fā)電講座——第三講 風(fēng)力發(fā)電用的發(fā)電機(jī)及風(fēng)力發(fā)電系統(tǒng)[J];太陽(yáng)能;2000年04期
4 劉博,張志浩,何山峰,任子真;側(cè)風(fēng)因素導(dǎo)致風(fēng)力機(jī)振動(dòng)的初步研究[J];太陽(yáng)能學(xué)報(bào);1987年03期
相關(guān)碩士學(xué)位論文 前2條
1 楊建旭;風(fēng)力發(fā)電磁懸浮偏航電機(jī)的偏航控制系統(tǒng)研究[D];曲阜師范大學(xué);2013年
2 張玉喬;海上風(fēng)力機(jī)磁懸浮偏航裝置設(shè)計(jì)與偏航控制[D];曲阜師范大學(xué);2012年
,本文編號(hào):1731261
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1731261.html
最近更新
教材專著