基于改進(jìn)蝙蝠算法的物流中心選址問題研究
本文選題:物流中心 切入點(diǎn):選址模型 出處:《河南大學(xué)》2017年碩士論文
【摘要】:隨著經(jīng)濟(jì)的發(fā)展和經(jīng)濟(jì)體制改革的深入,物流業(yè)在我國發(fā)展迅速且前景看好。從宏觀上來講,物流對一個(gè)國家經(jīng)濟(jì)的發(fā)展起著至關(guān)重要的作用,從微觀上來講,物流對提高一個(gè)企業(yè)競爭力來說意義重大。物流中心作為物流系統(tǒng)中的重要節(jié)點(diǎn),其選址在整個(gè)物流系統(tǒng)中顯得十分重要,選址的成功與否決定了整個(gè)物流系統(tǒng)的形狀、結(jié)構(gòu)和模式,不僅會(huì)影響到物流中心自身的運(yùn)營成本和績效以及未來發(fā)展,還會(huì)影響到整個(gè)物流系統(tǒng)是否能夠高效運(yùn)營。因此,對物流中心選址問題開展研究十分有意義,F(xiàn)實(shí)中,物流中心選址往往是動(dòng)態(tài)的、多目標(biāo)約束的、高度非線性的,由其轉(zhuǎn)化而來的問題往往都是高度非線性的復(fù)雜問題,其計(jì)算復(fù)雜度往往呈指數(shù)增長,傳統(tǒng)計(jì)算方法已經(jīng)很難對這類問題求解。借助于計(jì)算機(jī),智能優(yōu)化算法成為目前解決該類問題的有效方法之一。于2010年提出的蝙蝠算法(Bat-inspired Algorithm),以其模型簡單、易于實(shí)現(xiàn)、收斂速度快、尋優(yōu)能力強(qiáng)等特點(diǎn),被廣泛應(yīng)用解決高度非線性優(yōu)化問題和現(xiàn)實(shí)世界的各種工程問題。本文將蝙蝠算法進(jìn)行有效改進(jìn),然后用于求解物流中心選址問題。本文的主要研究內(nèi)容包括以下幾個(gè)方面:(1)概述物流中心的相關(guān)概念、物流中心選址的基本理論和方法模型。(2)介紹基本蝙蝠算法,在分析慣性權(quán)重的基礎(chǔ)上,選取指數(shù)遞減的慣性權(quán)重引入到蝙蝠算法對其進(jìn)行改進(jìn),提出具有指數(shù)遞減慣性權(quán)重的蝙蝠算法,以提高其計(jì)算精度、減少其運(yùn)行時(shí)間,并通過7個(gè)標(biāo)準(zhǔn)測試函數(shù)進(jìn)行仿真實(shí)驗(yàn),證明改進(jìn)蝙蝠算法可行性和有效性。(3)將改進(jìn)的蝙蝠算法應(yīng)用到物流中心選址問題上,對物流中心選址問題構(gòu)建算法編程,用改進(jìn)的蝙蝠算法求解,通過與基本蝙蝠算法的求解結(jié)果對比,與Lingo軟件的求解結(jié)果對比,表明改進(jìn)蝙蝠算法求解物流中心選址問題的有效性以及先進(jìn)性。本文為蝙蝠算法的改進(jìn)研究提供新的思路,為智能優(yōu)化算法求解物流中心選址問題提供新的參考,具有一定的理論意義和現(xiàn)實(shí)意義。
[Abstract]:With the development of economy and the deepening of economic system reform, the logistics industry is developing rapidly and has a bright future in China.From a macro point of view, logistics plays a vital role in the development of a country's economy, and from a micro point of view, logistics plays a significant role in improving the competitiveness of an enterprise.As an important node in the logistics system, the location of the logistics center is very important in the whole logistics system. The success of the location selection determines the shape, structure and mode of the whole logistics system.It will not only affect the operation cost and performance of logistics center and its future development, but also affect whether the whole logistics system can operate efficiently.Therefore, it is very meaningful to study the location of logistics center.In reality, logistics center location is often dynamic, multi-objective constrained, highly nonlinear, and the problems transformed from it are often highly nonlinear complex problems, and their computational complexity often increases exponentially.The traditional calculation method has been difficult to solve this kind of problem.With the help of computer, intelligent optimization algorithm has become one of the effective methods to solve this kind of problem.Bat-inspired algorithm, proposed in 2010, is widely used to solve highly nonlinear optimization problems and various engineering problems in the real world because of its simple model, easy implementation, fast convergence speed and strong optimization ability.In this paper, the bat algorithm is improved effectively, and then used to solve the logistics center location problem.The main research contents of this paper include the following several aspects: 1) summarizing the related concepts of logistics center, the basic theory and method model of logistics center location, introducing the basic bat algorithm, and analyzing the inertial weight.The inertial weight of exponential decline is introduced into the bat algorithm to improve it, and the bat algorithm with exponential decreasing inertia weight is proposed to improve its calculation accuracy and reduce its running time.The simulation results of seven standard test functions show that the improved bat algorithm is feasible and effective. The improved bat algorithm is applied to the logistics center location problem, and the algorithm for constructing the logistics center location problem is programmed.The improved bat algorithm is compared with the basic bat algorithm and the Lingo software. It shows that the improved bat algorithm is effective and advanced in solving the logistics center location problem.This paper provides a new way of thinking for the improvement of bat algorithm and a new reference for intelligent optimization algorithm to solve the problem of logistics center location. It has certain theoretical and practical significance.
【學(xué)位授予單位】:河南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F252;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李盼池;盧愛平;;自適應(yīng)分組量子衍生蛙跳算法[J];系統(tǒng)工程理論與實(shí)踐;2016年05期
2 周歡;李煜;;具有動(dòng)態(tài)慣性權(quán)重的布谷鳥搜索算法[J];智能系統(tǒng)學(xué)報(bào);2015年04期
3 羅波;袁嵩;朱合志;;基于禁忌搜索的蝙蝠算法[J];計(jì)算機(jī)時(shí)代;2014年12期
4 李國成;肖慶憲;;求解期末虧損最小對沖問題的交叉熵蝙蝠算法[J];系統(tǒng)工程;2014年11期
5 金偉健;王春枝;;基于蝙蝠算法的云計(jì)算資源分配研究[J];計(jì)算機(jī)應(yīng)用研究;2015年04期
6 尹進(jìn)田;劉云連;劉麗;伍鐵斌;;一種高效的混合蝙蝠算法[J];計(jì)算機(jī)工程與應(yīng)用;2014年07期
7 關(guān)菲;張強(qiáng);;模糊多目標(biāo)物流配送中心選址模型及其求解算法[J];中國管理科學(xué);2013年S1期
8 李煜;馬良;;新型全局優(yōu)化蝙蝠算法[J];計(jì)算機(jī)科學(xué);2013年09期
9 黃光球;趙魏娟;陸秋琴;;求解大規(guī)模優(yōu)化問題的可全局收斂蝙蝠算法[J];計(jì)算機(jī)應(yīng)用研究;2013年05期
10 孫湘;周大為;張希望;;慣性權(quán)重粒子群算法模型收斂性分析及參數(shù)選擇[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年18期
相關(guān)碩士學(xué)位論文 前2條
1 寇毅;改進(jìn)的遺傳算法在配送中心選址中的應(yīng)用[D];武漢理工大學(xué);2007年
2 宋心宇;基于粒子群優(yōu)化算法的物流中心選址研究[D];長沙理工大學(xué);2006年
,本文編號(hào):1730601
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1730601.html