滾絲機(jī)上下料機(jī)械手的設(shè)計(jì)、軌跡規(guī)劃及控制研究
本文選題:上下料機(jī)械手 切入點(diǎn):運(yùn)動(dòng)學(xué)方程 出處:《青島大學(xué)》2017年碩士論文
【摘要】:伴隨著工業(yè)4.0時(shí)代的發(fā)展,各國(guó)制造業(yè)自動(dòng)化和智能化水平得到了極大的提高,這與工業(yè)機(jī)器人的設(shè)計(jì)和使用息息相關(guān)。然而,目前國(guó)內(nèi)中小企業(yè)無(wú)力購(gòu)買(mǎi)大量工業(yè)機(jī)器人,尤其滾絲工藝的上下料任務(wù)仍由人工完成,存在效率低下、安全系數(shù)低以及自動(dòng)化水平低的問(wèn)題。在這一研究背景下,本文在了解了國(guó)內(nèi)外滾絲機(jī)及上下料機(jī)械手的最新發(fā)展情況的基礎(chǔ)上,通過(guò)掌握滾絲機(jī)的各項(xiàng)技術(shù)參數(shù)和軌跡要求,在考慮成本的前提下,設(shè)計(jì)出經(jīng)濟(jì)、適用的機(jī)械手系統(tǒng),并對(duì)其進(jìn)行理論研究和仿真分析。首先,本文介紹了上下料機(jī)械手的研究背景、意義和國(guó)內(nèi)外研究現(xiàn)狀,根據(jù)滾絲機(jī)實(shí)際的工藝要求,在Solidworks中對(duì)上下料機(jī)械手主要零部件的結(jié)構(gòu)、驅(qū)動(dòng)系統(tǒng)和傳動(dòng)系統(tǒng)進(jìn)行了設(shè)計(jì),包括所用步進(jìn)電機(jī)和減速器的選型,完成了上下料機(jī)械手機(jī)械系統(tǒng)部分的設(shè)計(jì),為下文運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真提供了一定的基礎(chǔ)。然后,通過(guò)機(jī)器人的三維模型建立其D-H坐標(biāo)系,運(yùn)用代數(shù)法計(jì)算機(jī)器人的正、逆向運(yùn)動(dòng)學(xué)方程,在MATLAB中運(yùn)用SimMechanics工具箱對(duì)其進(jìn)行虛擬桿件建模,通過(guò)仿真計(jì)算得到機(jī)器人的工作空間,從而有利于機(jī)器人位置的合理布置。運(yùn)用MATLAB中的Robotics Toolbox工具箱對(duì)其進(jìn)行正、逆向運(yùn)動(dòng)學(xué)仿真,驗(yàn)證了運(yùn)用代數(shù)法求得運(yùn)動(dòng)學(xué)方程的正確性。選取一段路徑對(duì)其進(jìn)行關(guān)節(jié)空間軌跡規(guī)劃,為下文整條路徑的軌跡規(guī)劃提供了參考意義。再次,根據(jù)機(jī)械手與滾絲機(jī)的空間布局求出了機(jī)械手上下料軌跡中一些關(guān)鍵點(diǎn)的坐標(biāo),通過(guò)MATLAB求出其逆解,運(yùn)用3次B樣條曲線對(duì)各關(guān)節(jié)角度進(jìn)行插值,得到的角度與時(shí)間的曲線作為ADAMS動(dòng)力學(xué)仿真中的驅(qū)動(dòng)函數(shù),通過(guò)動(dòng)力學(xué)仿真得到機(jī)械手末端的軌跡曲線、運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)參數(shù)。其中,運(yùn)動(dòng)學(xué)參數(shù)表明機(jī)械手能滿足滾絲機(jī)的上下料要求;動(dòng)力學(xué)參數(shù)表明機(jī)械手能平穩(wěn)運(yùn)行以及各關(guān)節(jié)電機(jī)選型合理。最后,通過(guò)繪制機(jī)械手詳細(xì)的動(dòng)作流程圖來(lái)確定機(jī)械手控制系統(tǒng)的I/O數(shù),在此基礎(chǔ)上對(duì)其進(jìn)行地址分配及PLC選型,運(yùn)用STEP 7-Micro/WIN軟件對(duì)其進(jìn)行編程,給出了主程序和部分自動(dòng)運(yùn)行程序的梯形圖,實(shí)現(xiàn)了上下料機(jī)械手的托盤(pán)規(guī)格的柔性化,從而為后續(xù)物理樣機(jī)的實(shí)現(xiàn)提供一定的控制基礎(chǔ)?傮w來(lái)說(shuō),本文通過(guò)對(duì)機(jī)器人學(xué)的理論研究,設(shè)計(jì)出一種由電氣驅(qū)動(dòng)的4自由度機(jī)械手。通過(guò)對(duì)其進(jìn)行仿真分析和軟件編程,表明該機(jī)械手能順利地完成滾絲工藝的上下料任務(wù),為后續(xù)物理樣機(jī)的制造提供了寶貴的基礎(chǔ)。
[Abstract]:With the development of industry 4.0 era, the level of automation and intelligence of manufacturing industry in various countries has been greatly improved, which is closely related to the design and use of industrial robots.However, domestic small and medium-sized enterprises are unable to buy a large number of industrial robots at present, especially the feeding and unloading task of wire rolling process is still completed manually, which has the problems of low efficiency, low safety factor and low level of automation.In this research background, this paper, on the basis of understanding the latest development of wire rolling machine and upper and lower manipulator at home and abroad, by mastering the technical parameters and trajectory requirements of the wire-rolling machine, and considering the cost, designs the economy.The applicable manipulator system is studied theoretically and simulated.First of all, this paper introduces the research background, significance and research status at home and abroad of the upper and lower manipulator. According to the actual technological requirements of the rolling machine, the structure of the main parts and components of the loading and unloading manipulator in Solidworks is introduced.The drive system and transmission system are designed, including the selection of stepping motor and reducer, and the design of the mechanical system of the upper and lower manipulator is completed, which provides a certain basis for the kinematics and dynamics simulation below.Then, the D-H coordinate system is established through the three-dimensional model of the robot, the forward and reverse kinematics equations of the robot are calculated by algebraic method, and the virtual bar is modeled by using the SimMechanics toolbox in MATLAB.The workspace of the robot is obtained by simulation, which is beneficial to the reasonable arrangement of the robot position.The forward and reverse kinematics simulation is carried out by using Robotics Toolbox toolbox in MATLAB, and the correctness of solving kinematics equation by algebraic method is verified.The joint space trajectory planning is carried out by selecting a section of path, which provides a reference for the trajectory planning of the whole path below.Thirdly, according to the space layout of manipulator and wire-rolling machine, the coordinates of some key points in the upper and lower trajectory of manipulator are obtained, the inverse solution is obtained by MATLAB, and the angle of each joint is interpolated by using 3-degree B-spline curve.The curve of angle and time is used as the driving function of ADAMS dynamics simulation, and the trajectory curve, kinematics and dynamic parameters of manipulator end are obtained by dynamic simulation.The kinematics parameters show that the manipulator can meet the requirements of feeding and unloading, and the dynamic parameters show that the manipulator can run smoothly and the motor selection of each joint is reasonable.Finally, the I / O number of manipulator control system is determined by drawing the detailed action flow chart of manipulator. On this basis, address assignment and PLC selection are carried out, and STEP 7-Micro/WIN software is used to program it.The trapezoidal diagram of the main program and part of the automatic running program is given, and the flexibility of the tray specification of the upper and lower manipulator is realized, which provides a certain control basis for the realization of the subsequent physical prototype.In general, through the theoretical research of robotics, a 4 DOF manipulator driven by electricity is designed in this paper.Through the simulation analysis and software programming, it is shown that the manipulator can successfully finish the loading and unloading task of the wire rolling process, which provides a valuable foundation for the subsequent manufacture of the physical prototype.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP241
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡靜波;馬華民;戚興明;;基于ADAMS軟件的三維運(yùn)動(dòng)混合機(jī)動(dòng)力學(xué)仿真分析[J];長(zhǎng)春工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年02期
2 李良;;自動(dòng)上下料技術(shù)在冷滾軋機(jī)床開(kāi)發(fā)中的應(yīng)用[J];金屬加工(冷加工);2012年22期
3 劉艷華;何高清;祖fE;;柔性車(chē)削中心上下料機(jī)構(gòu)設(shè)計(jì)和控制[J];組合機(jī)床與自動(dòng)化加工技術(shù);2012年07期
4 趙杰;;我國(guó)工業(yè)機(jī)器人發(fā)展現(xiàn)狀與面臨的挑戰(zhàn)[J];航空制造技術(shù);2012年12期
5 王紅玲;胡萬(wàn)強(qiáng);;基于PLC的工業(yè)機(jī)械手控制[J];液壓與氣動(dòng);2011年08期
6 管永忠;;工業(yè)機(jī)械手的設(shè)計(jì)探析[J];裝備制造技術(shù);2011年05期
7 楊曉雪;李林琛;;虛擬樣機(jī)技術(shù)的發(fā)展與應(yīng)用[J];科技資訊;2011年09期
8 ;Design and Verification of an Auxiliary System for High Vacuum Die Casting[J];Chinese Journal of Mechanical Engineering;2010年05期
9 宋歡;李永堂;齊會(huì)萍;;螺紋冷滾壓和切削加工的金屬組織變形研究[J];鍛壓裝備與制造技術(shù);2010年03期
10 徐海黎;解祥榮;莊健;王孫安;;工業(yè)機(jī)器人的最優(yōu)時(shí)間與最優(yōu)能量軌跡規(guī)劃[J];機(jī)械工程學(xué)報(bào);2010年09期
相關(guān)碩士學(xué)位論文 前10條
1 牛瑞利;基于西門(mén)子PLC的小型搬運(yùn)機(jī)械手控制系統(tǒng)設(shè)計(jì)[D];南京理工大學(xué);2013年
2 趙旭;基于機(jī)電液一體化的液壓機(jī)械手設(shè)計(jì)及其控制[D];東北大學(xué);2010年
3 張慶峰;新型數(shù)控機(jī)床裝夾機(jī)械手設(shè)計(jì)與分析[D];江蘇大學(xué);2010年
4 方牧;多移動(dòng)機(jī)械臂系統(tǒng)的軌跡規(guī)劃與跟蹤控制[D];上海交通大學(xué);2009年
5 劉好明;6R關(guān)節(jié)型機(jī)器人軌跡規(guī)劃算法研究及仿真[D];山東理工大學(xué);2008年
6 馬強(qiáng);六自由度機(jī)械臂軌跡規(guī)劃研究[D];哈爾濱工程大學(xué);2007年
7 夏發(fā)平;工業(yè)機(jī)器人運(yùn)動(dòng)學(xué)建模與仿真研究[D];華中科技大學(xué);2007年
8 谷雨明;物料搬運(yùn)機(jī)械手的系統(tǒng)分析與仿真[D];東北大學(xué);2006年
9 賴(lài)錫煌;基于ADAMS虛擬平臺(tái)的多關(guān)節(jié)機(jī)器人動(dòng)力學(xué)分析[D];北方工業(yè)大學(xué);2005年
10 仲大偉;專(zhuān)用焊接打磨機(jī)器人動(dòng)力學(xué)及仿真[D];蘭州理工大學(xué);2004年
,本文編號(hào):1726301
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1726301.html