高速列車表面脈動(dòng)壓力測試傳感器設(shè)計(jì)與模擬研究
本文選題:高速列車 切入點(diǎn):脈動(dòng)壓力 出處:《西南交通大學(xué)》2017年碩士論文
【摘要】:當(dāng)高速列車運(yùn)行速度超過300km/h時(shí),氣動(dòng)噪聲將成為列車噪聲的主導(dǎo)成分。而脈動(dòng)壓力是列車氣動(dòng)噪聲形成的根本原因。高速列車表面脈動(dòng)壓力具有幅值低,頻帶寬,易受干擾等諸多特點(diǎn),因而對傳感器測試性能有較高的要求。微壓阻式傳感器具有頻響及靈敏度高、結(jié)構(gòu)性能好等諸多優(yōu)點(diǎn),目前較常使用于高速列車表面空氣動(dòng)力學(xué)測試。但對于測取脈動(dòng)壓力,其性能仍存在一定的不足。針對以上問題,本文對微壓阻式傳感器測試原理進(jìn)行數(shù)值模擬,研究其結(jié)構(gòu)性能改進(jìn)方法,并對傳感器進(jìn)行振動(dòng)、溫度干擾分析,為傳感器性能結(jié)構(gòu)改進(jìn)及測試信號誤差干擾分離提供理論依據(jù)。本文以微壓阻式壓力傳感器為分析對象,采用Solidworks建立其核心敏感元件模型,通過Ansys進(jìn)行數(shù)值模擬求解,提取結(jié)果并計(jì)算電壓輸出,并提出了一種劃分電阻的結(jié)構(gòu)-電聯(lián)合數(shù)值模擬方法;在分析優(yōu)化傳感器平膜結(jié)構(gòu)的基礎(chǔ)上,提出了傳感器雙島結(jié)構(gòu)以及雙島-橫梁結(jié)構(gòu),并對每種結(jié)構(gòu)關(guān)鍵特征部位尺寸進(jìn)行優(yōu)化設(shè)計(jì)。通過數(shù)值模擬對比分析平膜、雙島、雙島-橫梁三種結(jié)構(gòu)振動(dòng)作用下的干擾輸出;通過箱體試驗(yàn)測取箱體振動(dòng)對氣壓干擾總輸出,通過CFD數(shù)值模擬得到箱體振動(dòng)對流場影響,通過結(jié)構(gòu)數(shù)值模擬及傳感器性能指標(biāo)得到振動(dòng)對傳感器的干擾,對比分析振動(dòng)干擾規(guī)律。選取溫度及壓力測點(diǎn),對傳感器溫度效應(yīng)進(jìn)行數(shù)值模擬,分析雙島-橫梁結(jié)構(gòu)的熱零點(diǎn)漂移及靈敏度漂移:通過溫度試驗(yàn)對國產(chǎn)及進(jìn)口傳感器溫度性能指標(biāo)進(jìn)行測試分析。對溫度-振動(dòng)-壓力進(jìn)行了耦合干擾分析;分析多因素干擾多輸入單輸出模型的建立方法;設(shè)計(jì)傳感器陣列結(jié)構(gòu)并提出了陣列測板代替風(fēng)洞模型車板壁測試脈動(dòng)壓力的方法。結(jié)果表明:經(jīng)優(yōu)化傳感器結(jié)構(gòu)性能,最終得到一個(gè)量程為20kPa,靈敏度為32.25mv/kPa,線性度為0.293%的雙島-橫梁傳感器結(jié)構(gòu),能滿足脈動(dòng)壓力的測試需求,結(jié)構(gòu)薄膜尺寸為3×3×0.02mm,島與寬梁區(qū)底面均為1.4×1.4mm。振動(dòng)干擾分析,平膜結(jié)構(gòu)加速度靈敏度為0.6Pa/g,雙島結(jié)構(gòu)及雙島-橫梁結(jié)構(gòu)加速度靈敏度為4.4-4.9Pa/g,振動(dòng)影響氣壓變化與振動(dòng)趨勢一致。通過箱體試驗(yàn)所提取振動(dòng)對氣壓總影響大致等于箱體流場CFD模擬與傳感器振動(dòng)干擾之和。雙島-橫梁結(jié)構(gòu)溫度效應(yīng)數(shù)值模擬,得到其靈敏度隨溫度變化規(guī)律為S =-1.194× 10-6t3 + 2.206 × 10-4t2-0.01453t + 32.5,零點(diǎn)漂移隨溫度變化規(guī)律為a= 0.1474×t-1.908;MSP1015-100傳感器零漂趨勢與數(shù)值模擬趨勢相近,8515C-15傳感器零漂趨勢與數(shù)值模擬相反;诶碚、數(shù)值模擬、試驗(yàn)相結(jié)合能有效建立多因素干擾多輸入單輸出模型,設(shè)計(jì)的陣列結(jié)構(gòu)性能及一致性良好,能有效測取脈動(dòng)壓力。
[Abstract]:When the speed of high speed train exceeds 300km/h, aerodynamic noise will become the dominant component of train noise.The pulsating pressure is the fundamental cause of train aerodynamic noise formation.The high speed train surface pulsating pressure has many characteristics such as low amplitude, frequency bandwidth, easy to be interfered, and so on, so the performance of the sensor is very high.Micro-piezoresistive sensors have many advantages, such as high frequency response, high sensitivity, good structural performance and so on. At present, micro piezoresistive sensors are often used in high-speed train surface aerodynamics testing.However, the performance of pulsating pressure is still insufficient.Aiming at the above problems, the testing principle of micro-piezoresistive sensor is numerically simulated, its structure and performance are improved, and the vibration and temperature interference of the sensor are analyzed.It provides a theoretical basis for the improvement of sensor performance and the separation of signal error and interference.In this paper, the micro-piezoresistive pressure sensor is taken as the analysis object, the core sensitive element model is established by Solidworks, and the numerical simulation is carried out by Ansys, the results are extracted and the voltage output is calculated.Based on the analysis and optimization of the sensor flat membrane structure, the sensor two-island structure and the dual-island-beam structure are proposed.At the same time, the size of the key features of each structure is optimized.Through numerical simulation, the interference output of three kinds of structures, such as flat film, double island, double island and cross beam, is compared and analyzed, and the total output of box vibration to air pressure disturbance is measured by box test, and the influence of box vibration flow field is obtained by CFD numerical simulation.The vibration interference to the sensor is obtained by numerical simulation of the structure and performance index of the sensor, and the vibration disturbance law is compared and analyzed.The temperature effect of the sensor is simulated by selecting the temperature and pressure measurement points, and the thermal zero drift and sensitivity drift of the two-island-beam structure are analyzed. The temperature performance of the domestic and imported sensors is tested and analyzed by temperature test.The coupled interference analysis of temperature-vibration-pressure is carried out; the method of establishing multi-factor interference multi-input single-output model is analyzed; the sensor array structure is designed and the method of measuring fluctuating pressure by array plate instead of wind tunnel model is proposed.The results show that a two-island-beam sensor structure with a measuring range of 20 KPA, a sensitivity of 32.25 MV / KPA and a linearity of 0.293% can be obtained by optimizing the structure performance of the sensor.The size of the structure film is 3 脳 3 脳 0.02mm, and the bottom surface of the island and the wide beam area is 1.4 脳 1.4mm.Vibration disturbance analysis shows that the acceleration sensitivity of flat membrane structure is 0.6 Pa / g, and the acceleration sensitivity of double island structure and double island beam structure is 4.4-4.9 Par / g. The effect of vibration on atmospheric pressure is consistent with the vibration trend.The total effect of the vibration extracted from the box test on the air pressure is approximately equal to the sum of the CFD simulation of the flow field of the box and the vibration disturbance of the sensor.Numerical simulation of temperature effect on double-island-crossbeam structure,It is found that the sensitivity varies with temperature as S ~ (-1.194) 脳 10-6t3 _ (2.206) 脳 10-4t2-0.01453t _ (32.5), and the zero drift with temperature is a = 0.1474 脳 t-1.908 MSP1015-100 sensor. The zero drift trend of the sensor is similar to that of numerical simulation. The zero drift trend of sensor 8515C-15 is opposite to that of numerical simulation.Based on theory, numerical simulation and experiment, the multi-factor interference multi-input single-output model can be established effectively. The designed array structure has good performance and consistency, and can effectively measure the pulsating pressure.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊國偉;魏宇杰;趙桂林;劉玉標(biāo);曾曉輝;邢云林;賴姜;張營營;吳晗;陳啟生;劉秋生;李家春;胡開鑫;楊中平;劉文正;王文靜;孫守光;張衛(wèi)華;周寧;李瑞平;呂青松;金學(xué)松;溫澤峰;肖新標(biāo);趙鑫;崔大賓;吳兵;鐘碩喬;周信;;高速列車的關(guān)鍵力學(xué)問題[J];力學(xué)進(jìn)展;2015年00期
2 陳春俊;何洪陽;邵云龍;;基于小波變換的高速列車表面脈動(dòng)壓力提取[J];西南交通大學(xué)學(xué)報(bào);2015年03期
3 卿三惠;李雪梅;卿光輝;;中國高速鐵路的發(fā)展與技術(shù)創(chuàng)新[J];高速鐵路技術(shù);2014年01期
4 趙劍秋;陸森林;左言言;;高速列車外部流場和車內(nèi)噪聲模擬計(jì)算[J];噪聲與振動(dòng)控制;2013年06期
5 傘海生;宋子軍;王翔;趙燕立;余煜璽;;適用于惡劣環(huán)境的MEMS壓阻式壓力傳感器[J];光學(xué)精密工程;2012年03期
6 韓銳銳;張兆華;任天令;林惠旺;劉理天;;壓阻式壓力傳感器靈敏度與線性度的仿真方法[J];微納電子技術(shù);2012年02期
7 劉珍妮;譚曉蘭;楊峻松;;一種硅微壓阻式壓力傳感器的研究[J];機(jī)械設(shè)計(jì)與制造;2012年01期
8 王順洪;;中國高速鐵路發(fā)展及其經(jīng)濟(jì)影響分析[J];西南交通大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2010年05期
9 陳銘儒;;簡述我國高速鐵路的發(fā)展概況[J];當(dāng)代經(jīng)濟(jì);2010年16期
10 孫小龍;;用有限元仿真計(jì)算壓阻式MEMS壓力傳感器的輸出[J];儀表技術(shù)與傳感器;2010年08期
,本文編號:1709246
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1709246.html