一種改進(jìn)的人臉識別CNN結(jié)構(gòu)研究
本文選題:人臉識別 切入點:卷積神經(jīng)網(wǎng)絡(luò) 出處:《計算機(jī)工程與應(yīng)用》2017年17期
【摘要】:為了克服人臉識別中存在光照、姿態(tài)、顏色等噪聲的干擾,融合了卷積神經(jīng)網(wǎng)絡(luò)與孿生神經(jīng)網(wǎng)絡(luò)的優(yōu)點,提出了一種改進(jìn)的CNN網(wǎng)絡(luò)結(jié)構(gòu),該結(jié)構(gòu)由兩個卷積神經(jīng)網(wǎng)絡(luò)組成,且共享網(wǎng)絡(luò)權(quán)值,在該結(jié)構(gòu)的訓(xùn)練中采用了差異深度度量學(xué)習(xí)(DDML)算法。卷積結(jié)構(gòu)有效地去除外界噪聲干擾,且在非線性降維中權(quán)值共享結(jié)構(gòu)能夠自動提取相同特征,DDML算法增加了提取特征的有效性。在ORL、Yale B和AR人臉數(shù)據(jù)庫上實驗結(jié)果表明,與PCA、CNN等算法相比,識別穩(wěn)定度高,識別率提升近5個百分點。
[Abstract]:In order to overcome the interference of illumination, pose and color in face recognition, the advantages of convolution neural network and twinning neural network are combined, and an improved CNN network structure is proposed, which consists of two convolution neural networks. And the network weights are shared. In the training of the structure, the difference depth measure learning algorithm is adopted. The convolution structure effectively removes the external noise interference. In nonlinear dimensionality reduction, the weight sharing structure can automatically extract the same feature and the DDML algorithm increases the effectiveness of feature extraction. The experimental results on ORL Yale B and AR face database show that the recognition stability is higher than that of PCA-CNN. The recognition rate increased by nearly 5 percentage points.
【作者單位】: 湖南理工學(xué)院信息與通信工程學(xué)院;湖南理工學(xué)院復(fù)雜系統(tǒng)優(yōu)化與控制湖南省普通高等學(xué)校重點實驗室;
【基金】:湖南省高校創(chuàng)新平臺開放基金(No.15K051) 湖南省研究生科研創(chuàng)新項目(No.CX2016B670) 湖南省教育廳項目(No.16C0723) 湖南省高校重點實驗室開放基金(No.14K042)
【分類號】:TP18;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曠章輝;王甲海;周雅蘭;;用改進(jìn)的競爭Hopfield神經(jīng)網(wǎng)絡(luò)求解多邊形近似問題[J];計算機(jī)科學(xué);2009年03期
2 高永建 ,吳健康;神經(jīng)網(wǎng)絡(luò)及其識別應(yīng)用簡介[J];電信科學(xué);1990年02期
3 謝國梁;;神經(jīng)網(wǎng)絡(luò):從希望到現(xiàn)實[J];激光與光電子學(xué)進(jìn)展;1991年01期
4 鄭士貴;文獻(xiàn)自動閱讀神經(jīng)網(wǎng)絡(luò)[J];管理科學(xué)文摘;1996年08期
5 呂芬;趙生妹;;基于Hopfield神經(jīng)網(wǎng)絡(luò)的噪聲字母識別[J];計算機(jī)與信息技術(shù);2005年12期
6 李毅;童紅俊;宋貴寶;李冬;;神經(jīng)網(wǎng)絡(luò)在飛行器航跡仿真計算中的應(yīng)用[J];海軍航空工程學(xué)院學(xué)報;2006年05期
7 林鋼;;基于SOM神經(jīng)網(wǎng)絡(luò)對潛在客戶的挖掘[J];南寧職業(yè)技術(shù)學(xué)院學(xué)報;2006年04期
8 楊帆;陳勁杰;唐梅華;陳鑫;;簡論神經(jīng)網(wǎng)絡(luò)在搜索中的應(yīng)用[J];機(jī)械管理開發(fā);2008年01期
9 朱紅斌;;LVQ神經(jīng)網(wǎng)絡(luò)在交通事件檢測中的應(yīng)用[J];計算機(jī)工程與應(yīng)用;2008年34期
10 李彤巖;李興明;;神經(jīng)網(wǎng)絡(luò)在確定關(guān)聯(lián)規(guī)則挖掘算法權(quán)值中的應(yīng)用研究[J];計算機(jī)應(yīng)用研究;2008年05期
相關(guān)會議論文 前10條
1 陳文新;王長富;戴蓓倩;;基于神經(jīng)網(wǎng)絡(luò)的漢語四聲識別[A];第一屆全國語言識別學(xué)術(shù)報告與展示會論文集[C];1990年
2 李睿;李明軍;;一種模糊高斯基神經(jīng)網(wǎng)絡(luò)在數(shù)值逼近上的仿真[A];計算機(jī)技術(shù)與應(yīng)用進(jìn)展——全國第17屆計算機(jī)科學(xué)與技術(shù)應(yīng)用(CACIS)學(xué)術(shù)會議論文集(上冊)[C];2006年
3 許旭萍;臧道青;;采用Hopfield神經(jīng)網(wǎng)絡(luò)實施缸蓋表面點陣字符識別[A];第十五屆全國汽車檢測技術(shù)年會論文集[C];2011年
4 朱長春;;神經(jīng)網(wǎng)絡(luò)用于線性時固有系統(tǒng)的廣義狀態(tài)轉(zhuǎn)移矩陣的識別[A];中國工程物理研究院科技年報(1999)[C];1999年
5 王玉斌;李永明;王穎;;用數(shù)據(jù)挖掘和神經(jīng)網(wǎng)絡(luò)技術(shù)預(yù)測工程造價[A];第十一屆全國電工數(shù)學(xué)學(xué)術(shù)年會論文集[C];2007年
6 應(yīng)捷;袁一方;;神經(jīng)網(wǎng)絡(luò)指紋特征點匹配算法的改進(jìn)[A];2007'中國儀器儀表與測控技術(shù)交流大會論文集(二)[C];2007年
7 謝小良;符卓;;基于Hopfield神經(jīng)網(wǎng)絡(luò)的單周期船舶調(diào)度模型及算法[A];2008年全國開放式分布與并行計算機(jī)學(xué)術(shù)會議論文集(下冊)[C];2008年
8 陳意;;神經(jīng)網(wǎng)絡(luò)在船舶識別一個應(yīng)用[A];船舶航泊安全的新經(jīng)驗新技術(shù)論文集(上冊)[C];2007年
9 王輝;楊杰;黎明;蔡念;;一種基于神經(jīng)網(wǎng)絡(luò)的圖像復(fù)原方法[A];2006年全國光電技術(shù)學(xué)術(shù)交流會會議文集(D 光電信息處理技術(shù)專題)[C];2006年
10 賈睿;徐啟強(qiáng);劉艷;;基于神經(jīng)網(wǎng)絡(luò)的網(wǎng)殼結(jié)構(gòu)近似分析研究[A];第二十一屆全國振動與噪聲高技術(shù)及應(yīng)用學(xué)術(shù)會議論文集[C];2008年
相關(guān)重要報紙文章 前1條
1 中國科技大學(xué)計算機(jī)系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計算機(jī)世界;2003年
相關(guān)博士學(xué)位論文 前10條
1 李曉剛;基于神經(jīng)網(wǎng)絡(luò)的碼垛機(jī)器人視覺位姿測量及伺服控制研究[D];北京林業(yè)大學(xué);2015年
2 戶保田;基于深度神經(jīng)網(wǎng)絡(luò)的文本表示及其應(yīng)用[D];哈爾濱工業(yè)大學(xué);2016年
3 沈旭;基于序列深度學(xué)習(xí)的視頻分析:建模表達(dá)與應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2017年
4 諸勇;正交回歸神經(jīng)網(wǎng)絡(luò)及其在控制系統(tǒng)中的應(yīng)用[D];浙江大學(xué);1998年
5 田景文;地下油藏的仿真與預(yù)測[D];哈爾濱工程大學(xué);2001年
6 彭宏京;基于稀疏RAM的神經(jīng)網(wǎng)絡(luò)及其人臉識別應(yīng)用研究[D];南京航空航天大學(xué);2002年
7 王吉權(quán);BP神經(jīng)網(wǎng)絡(luò)的理論及其在農(nóng)業(yè)機(jī)械化中的應(yīng)用研究[D];沈陽農(nóng)業(yè)大學(xué);2011年
8 郭海湘;石油儲層縱向預(yù)測軟硬計算融合的理論與方法研究[D];中國地質(zhì)大學(xué);2008年
9 葛利;基于過程神經(jīng)網(wǎng)絡(luò)的時序數(shù)據(jù)挖掘研究[D];哈爾濱工程大學(xué);2012年
10 柴冰華;色貌模型CIECAM02若干問題的研究[D];北京理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 陳彥至;神經(jīng)網(wǎng)絡(luò)降維算法研究與應(yīng)用[D];華南理工大學(xué);2015年
2 蔡邦宇;人臉識別中單次ERP時空特征分析及其快速檢索的應(yīng)用[D];浙江大學(xué);2015年
3 鄭川;垃圾評論檢測算法的研究[D];西南交通大學(xué);2015年
4 汪濟(jì)民;基于卷積神經(jīng)網(wǎng)絡(luò)的人臉檢測和性別識別研究[D];南京理工大學(xué);2015年
5 彭玲玲;基于不確定理論與機(jī)器學(xué)習(xí)的行人檢測[D];長安大學(xué);2015年
6 楊陳東;BP-Fisher判別分析法[D];長安大學(xué);2015年
7 孟鑫;基于Hadoop云平臺下的客流量預(yù)測研究[D];長安大學(xué);2015年
8 張勇;深度卷積神經(jīng)網(wǎng)絡(luò)在車牌和人臉檢測領(lǐng)域的應(yīng)用研究[D];鄭州大學(xué);2015年
9 宋璐璐;財經(jīng)職業(yè)技術(shù)學(xué)院票務(wù)管理系統(tǒng)的設(shè)計與實現(xiàn)[D];西安工業(yè)大學(xué);2015年
10 陳銳浩;基于神經(jīng)網(wǎng)絡(luò)的口令屬性分析工具開發(fā)[D];上海交通大學(xué);2015年
,本文編號:1697570
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1697570.html