天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

結合膚色模型和卷積神經(jīng)網(wǎng)絡的手勢識別方法

發(fā)布時間:2018-03-26 18:38

  本文選題:手勢識別 切入點:高斯膚色模型 出處:《計算機工程與應用》2017年06期


【摘要】:在手勢識別研究過程中,人工選取特征難以適應手勢的多變性。提出了一種結合膚色模型和卷積神經(jīng)網(wǎng)絡的手勢識別方法,對采集的不同背景下的手勢圖像,首先用膚色高斯模型分割出手勢區(qū)域,然后采用卷積神經(jīng)網(wǎng)絡建立手勢的識別模型,該模型融合了手勢特征提取和分類過程,模擬視覺傳導和認知,有效避免了人工特征提取的主觀性和局限性。識別模型以手勢區(qū)域的灰度信息為輸入,同時利用權值共享和池化等技術減少網(wǎng)絡權值個數(shù),降低了模型的復雜度。實驗結果表明,卷積神經(jīng)網(wǎng)絡(CNN)方法能夠有效進行特征學習,在不同數(shù)據(jù)集下對手勢的平均識別率都達到95%以上,與傳統(tǒng)方法進行對比實驗,表明該方法具有較高的識別率和實時性。
[Abstract]:In the process of gesture recognition, artificial feature selection is difficult to adapt to the variety of gestures. A combination of skin color model and convolutional neural network method of gesture recognition, gesture image acquisition under the background of different, firstly divided the gesture area with color Gauss model, then the model recognition gesture convolutional neural network. The model combines the feature extraction and classification process, simulation of visual conduction and cognition, effectively avoids the subjectivity and limitation of artificial feature extraction. Recognition model by gray information of the gesture area as input, using weight sharing and pooling technology to reduce the number of network weights, reduce the complexity of model experiment. The results show that the convolution neural network (CNN) method can effective learning characteristics in different data sets, the average for the gesture recognition rate of over 95%, and the traditional party The comparison experiment shows that the method has high recognition rate and real time.

【作者單位】: 昆明理工大學信息工程與自動化學院;
【基金】:國家自然科學基金(No.61263017) 云南省自然科學基金(No.2011FZ060,No.KKSY201303120)
【分類號】:TP391.41;TP183

【相似文獻】

相關期刊論文 前10條

1 ;新型手勢識別技術可隔著口袋操作手機[J];電腦編程技巧與維護;2014年07期

2 任海兵,祝遠新,徐光,

本文編號:1669099


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1669099.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶0826a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com