電子產(chǎn)品外殼五軸磨拋設(shè)備開發(fā)研究
本文選題:電子產(chǎn)品外殼 切入點(diǎn):五軸磨拋設(shè)備 出處:《吉林大學(xué)》2017年碩士論文
【摘要】:兩個世紀(jì)以來,各種的電子產(chǎn)品得到了迅速發(fā)展,極大方便了人們的生活。近年來,我國的電子產(chǎn)品在全國外貿(mào)的進(jìn)出口份額中占比很大,國內(nèi)的消費(fèi)電子市場也在不斷擴(kuò)展。電子產(chǎn)品產(chǎn)量大、更新?lián)Q代迅速等特點(diǎn)對生產(chǎn)廠家提出了很高的要求。由于產(chǎn)品外殼質(zhì)量直接影響產(chǎn)品的外觀和觸感,因此產(chǎn)品外殼的制造是生產(chǎn)廠家跟上市場潮流的關(guān)鍵環(huán)節(jié)。當(dāng)前各廠商多使用金屬薄殼作為電子產(chǎn)品的外殼,生產(chǎn)廠家將加工成型后的金屬薄殼經(jīng)過拋光打磨等表面處理后,再經(jīng)過陽極氧化、噴砂等工藝處理即可得到大批量的合格產(chǎn)品。在上述處理過程中,只有拋光打磨處理對手工的依賴很大。手工磨拋會產(chǎn)生大量金屬粉塵,嚴(yán)重惡化車間的生產(chǎn)環(huán)境,危害車間工人的身體健康,不利于安全生產(chǎn)。此外,手工磨拋的質(zhì)量受工人經(jīng)驗(yàn)影響極大,生產(chǎn)效率也較為低下,不利于大規(guī)模生產(chǎn)。針對上述問題,本文為一款指定的電子產(chǎn)品外殼開發(fā)了一套自動化五軸磨拋設(shè)備,設(shè)計了專門的自動夾持模塊和磨拋工具系統(tǒng),能夠?qū)崿F(xiàn)對產(chǎn)品的自動裝夾和對磨拋壓力大小的精確控制,有效提升加工效率和質(zhì)量,滿足加工要求。本文的主要研究內(nèi)容包括:(1)根據(jù)加工產(chǎn)品的特點(diǎn)提出了磨拋加工的工藝要求,通過比較各類磨拋加工方法的優(yōu)劣,選擇了氣動磨頭和砂紙作為磨拋工具,提出了設(shè)備的整體結(jié)構(gòu)方案,確定了整機(jī)的結(jié)構(gòu)形式、自由度和磨拋工作方式,對各軸的驅(qū)動部件進(jìn)行了選型計算與校核,對自動夾持模塊和磨拋工具系統(tǒng)進(jìn)行了結(jié)構(gòu)設(shè)計,并對磨拋設(shè)備的關(guān)鍵部位進(jìn)行了靜力學(xué)仿真分析和振動模態(tài)分析,驗(yàn)證了結(jié)構(gòu)設(shè)計的合理性。(2)通過對磨拋運(yùn)動控制要求的分析,給出了加工控制方案,為設(shè)備設(shè)計了一套電氣控制系統(tǒng),對其進(jìn)行了選型與構(gòu)建。根據(jù)設(shè)備的運(yùn)動鏈建立了設(shè)備的運(yùn)動學(xué)模型,對加工過程進(jìn)行了軌跡規(guī)劃,通過運(yùn)動學(xué)逆解求出各軸運(yùn)動量,在此基礎(chǔ)上給出了編制完整數(shù)控程序代碼的后續(xù)處理方案。(3)對本設(shè)備的磨拋壓力控制系統(tǒng)進(jìn)行了硬件選型,介紹了氣動伺服磨拋壓力控制系統(tǒng)的原理,建立了相應(yīng)的數(shù)學(xué)模型,判斷了該系統(tǒng)的穩(wěn)定性。采用PID控制方法作為磨拋壓力的控制策略,整定了PID參數(shù)并給出了本系統(tǒng)PID參數(shù)的最佳組合。(4)對影響磨拋加工質(zhì)量的因素進(jìn)行了分析,通過一系列單因素實(shí)驗(yàn)探索了各影響因素對磨拋效果的影響。通過設(shè)計一組正交試驗(yàn),了解了影響磨拋后工件表面粗糙度的主要因素,確定了一組最佳工藝參數(shù),并進(jìn)行了驗(yàn)證實(shí)驗(yàn)。實(shí)驗(yàn)表明磨拋后的樣件能夠滿足本項(xiàng)目的要求。
[Abstract]:Over the past two centuries, all kinds of electronic products have developed rapidly and greatly facilitated people's lives. In recent years, China's electronic products account for a large proportion of the import and export share of China's foreign trade. The domestic consumer electronics market is also expanding. The characteristics of large output of electronic products and rapid replacement of electronic products put forward high requirements for manufacturers. The quality of the product shell directly affects the appearance and touch of the product. Therefore, the manufacture of the shell is the key link for the manufacturers to keep up with the market trend. At present, the manufacturers mostly use the metal thin shell as the shell of the electronic products. After the manufacturers have treated the machined metal thin shell after polishing and polishing, After anodic oxidation, sand blasting and other processes, a large number of qualified products can be obtained. In the above treatment, only the polishing and grinding processes rely heavily on handwork. Manual grinding and polishing will produce a large amount of metal dust. Seriously deteriorating the production environment of the workshop, endangering the health of the workers in the workshop and harming the safety of production. In addition, the quality of manual grinding and polishing is greatly affected by the workers' experience, and the production efficiency is relatively low. This paper develops a set of automatic five-axis grinding and polishing equipment for a specified electronic product shell, and designs a special automatic gripping module and grinding tool system. It can realize the automatic clamping of the product and the accurate control of the grinding and polishing pressure. It can effectively improve the processing efficiency and quality. The main research contents of this paper include: (1) according to the characteristics of the processed products, the technological requirements of grinding and polishing are put forward. By comparing the advantages and disadvantages of various grinding and polishing methods, pneumatic grinding heads and sandpaper are selected as polishing tools. The whole structure scheme of the equipment is put forward, the structure form, the degree of freedom and the working mode of grinding and polishing are determined, the driving parts of each axis are selected and calculated, and the automatic clamping module and grinding tool system are designed. The static simulation analysis and vibration modal analysis of the key parts of the grinding and polishing equipment are carried out. The rationality of the structure design is verified by the analysis of the requirements of the grinding and polishing motion control, and the machining control scheme is given. A set of electrical control system is designed for the equipment. According to the kinematic chain of the equipment, the kinematics model of the equipment is established, and the path planning of the machining process is carried out, and the motion quantities of each axis are obtained by inverse kinematics solution. On this basis, the following processing scheme of complete NC program code is given. The hardware selection of the grinding and polishing pressure control system of this equipment is carried out, the principle of pneumatic servo grinding and polishing pressure control system is introduced, and the corresponding mathematical model is established. The stability of the system is judged. The PID control method is used as the control strategy of grinding and polishing pressure. The PID parameters are adjusted and the best combination of PID parameters of the system is given. The factors affecting the quality of grinding and polishing are analyzed. Through a series of single factor experiments, the effects of various factors on grinding and polishing effect are explored. By designing a group of orthogonal experiments, the main factors affecting the surface roughness of workpiece after grinding are understood, and a group of optimum technological parameters are determined. The experimental results show that the polished samples can meet the requirements of the project.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN05;TP273;TG580.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 謝中生;國內(nèi)外硅片磨拋設(shè)備發(fā)展述評[J];電子工業(yè)專用設(shè)備;1998年04期
2 溫故;切、磨、拋技術(shù)交流會在重慶召開[J];半導(dǎo)體技術(shù);1980年05期
3 林少丹;傅高升;;基于工業(yè)機(jī)器人的自動磨拋系統(tǒng)柔性加工系統(tǒng)設(shè)計[J];成都信息工程學(xué)院學(xué)報;2012年05期
4 鐘秉福;一種新的V形槽腐蝕方法[J];微電子學(xué);1989年01期
5 張川;陳耀龍;陳曉燕;王平;;非球面等去除量磨拋加工中的變速運(yùn)動模型[J];光電工程;2014年06期
6 姚英,蔡毅,歐明娣,梁宏林,,朱惜辰;磨拋工藝中HgCdTe晶片的表面損傷[J];紅外技術(shù);1994年05期
7 ;切磨拋工藝對雙極LS制管的影響[J];半導(dǎo)體技術(shù);1978年03期
相關(guān)會議論文 前2條
1 王浩程;張宏太;張德良;方新;;行星滾磨拋光磨料流態(tài)特征的數(shù)值模擬[A];全國生產(chǎn)工程第九屆年會暨第四屆青年科技工作者學(xué)術(shù)會議論文集(二)[C];2004年
2 余英良;王翠蘭;;車磨拋合一的數(shù)控加工及拋磨循環(huán)程序的應(yīng)用[A];2005年中國機(jī)械工程學(xué)會年會論文集[C];2005年
相關(guān)重要報紙文章 前3條
1 張麗紅;石材地面“無縫磨拋與翻新技術(shù)”[N];中國礦業(yè)報;2002年
2 于茗仲 王維升;手扶式多功能石材磨拋加工機(jī)問世[N];中國機(jī)電日報;2000年
3 鄭原馳 仲崇玉 本報記者 李林巖;探索點(diǎn)亮新生活[N];吉林日報;2013年
相關(guān)博士學(xué)位論文 前3條
1 霍文國;鈦合金干式磨拋加工技術(shù)研究[D];南京航空航天大學(xué);2010年
2 李大奇;葉片雙面磨拋系統(tǒng)及路徑規(guī)劃研究[D];吉林大學(xué);2011年
3 趙軍;大構(gòu)件焊縫磨拋機(jī)器人視覺測量技術(shù)的研究[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 于興展;彈性磨具磨拋加工中磨拋參數(shù)與磨拋效果相關(guān)性的研究[D];西安建筑科技大學(xué);2015年
2 劉睿平;采用彈性磨具對M300磨拋的微觀接觸參數(shù)模型研究[D];西安建筑科技大學(xué);2015年
3 程小漢;多面數(shù)控磨拋機(jī)的設(shè)計與試驗(yàn)研究[D];廈門理工學(xué)院;2016年
4 袁強(qiáng);整體葉盤磨拋/測量軌跡規(guī)劃與工藝研究[D];吉林大學(xué);2016年
5 高亞鵬;整體葉盤磨拋工具系統(tǒng)控制研究[D];吉林大學(xué);2016年
6 付林;葉片復(fù)雜曲面磨拋加工路徑規(guī)劃算法研究[D];吉林大學(xué);2016年
7 蔡得領(lǐng);機(jī)器人砂帶磨拋控制系統(tǒng)設(shè)計[D];華中科技大學(xué);2014年
8 宋鵬飛;石材線條數(shù)控磨拋機(jī)的研究與設(shè)計[D];華中科技大學(xué);2015年
9 楊龍;機(jī)器人砂帶磨拋力建模及其在鈦合金葉片加工中的應(yīng)用[D];華中科技大學(xué);2015年
10 趙永兵;混聯(lián)葉片磨拋機(jī)床誤差分析及實(shí)驗(yàn)研究[D];吉林大學(xué);2017年
本文編號:1667100
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1667100.html